Properties

Label 2.11_233.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 11 \cdot 233 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2563= 11 \cdot 233 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 7 x^{6} + 5 x^{5} - 31 x^{4} + 70 x^{3} - 68 x^{2} + 43 x - 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.11_233.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 16 + \left(3 a + 8\right)\cdot 59 + \left(5 a + 49\right)\cdot 59^{2} + \left(57 a + 2\right)\cdot 59^{3} + \left(6 a + 2\right)\cdot 59^{4} + \left(36 a + 44\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 30 + \left(30 a + 39\right)\cdot 59 + \left(a + 39\right)\cdot 59^{2} + \left(5 a + 44\right)\cdot 59^{3} + \left(13 a + 11\right)\cdot 59^{4} + \left(43 a + 56\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 44 + \left(19 a + 44\right)\cdot 59 + \left(25 a + 28\right)\cdot 59^{2} + \left(51 a + 41\right)\cdot 59^{3} + \left(42 a + 32\right)\cdot 59^{4} + \left(57 a + 33\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 44 + 41\cdot 59 + 50\cdot 59^{2} + 7\cdot 59^{3} + 32\cdot 59^{4} + 25\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 19 + \left(28 a + 22\right)\cdot 59 + \left(57 a + 10\right)\cdot 59^{2} + \left(53 a + 48\right)\cdot 59^{3} + \left(45 a + 19\right)\cdot 59^{4} + \left(15 a + 27\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 16 + \left(39 a + 33\right)\cdot 59 + \left(33 a + 34\right)\cdot 59^{2} + \left(7 a + 8\right)\cdot 59^{3} + \left(16 a + 24\right)\cdot 59^{4} + \left(a + 48\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 36 + 52\cdot 59 + 30\cdot 59^{2} + 27\cdot 59^{3} + 43\cdot 59^{4} + 45\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 41 a + 34 + \left(55 a + 52\right)\cdot 59 + \left(53 a + 50\right)\cdot 59^{2} + \left(a + 54\right)\cdot 59^{3} + \left(52 a + 10\right)\cdot 59^{4} + \left(22 a + 14\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,6,2)(3,7,8,4)$
$(1,8,6,3)(2,4,5,7)$
$(1,3)(4,7)(6,8)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,8,4)(3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$12$$2$$(1,3)(4,7)(6,8)$$0$
$8$$3$$(1,3,2)(5,6,8)$$-1$
$6$$4$$(1,5,6,2)(3,7,8,4)$$0$
$8$$6$$(1,5,3,6,2,8)(4,7)$$1$
$6$$8$$(1,5,8,7,6,2,3,4)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,2,8,4,6,5,3,7)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.