Properties

Label 2.11_13.5t2.1c1
Dimension 2
Group $D_{5}$
Conductor $ 11 \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$143= 11 \cdot 13 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd
Determinant: 1.11_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 3 + \left(2 a + 11\right)\cdot 17 + \left(13 a + 12\right)\cdot 17^{2} + \left(8 a + 9\right)\cdot 17^{3} + \left(13 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 7 + \left(a + 8\right)\cdot 17 + \left(8 a + 5\right)\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(11 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 12\cdot 17 + 14\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 16 + 15 a\cdot 17 + \left(8 a + 12\right)\cdot 17^{2} + \left(15 a + 9\right)\cdot 17^{3} + \left(5 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 16 + 14 a\cdot 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(8 a + 5\right)\cdot 17^{3} + \left(3 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,5)$
$(1,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,3)(2,5)$$0$
$2$$5$$(1,5,2,3,4)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$2$$5$$(1,2,4,5,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.