Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + 3 + \left(2 a + 11\right)\cdot 17 + \left(13 a + 12\right)\cdot 17^{2} + \left(8 a + 9\right)\cdot 17^{3} + \left(13 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + 7 + \left(a + 8\right)\cdot 17 + \left(8 a + 5\right)\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(11 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 12\cdot 17 + 14\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 a + 16 + 15 a\cdot 17 + \left(8 a + 12\right)\cdot 17^{2} + \left(15 a + 9\right)\cdot 17^{3} + \left(5 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 16 + 14 a\cdot 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(8 a + 5\right)\cdot 17^{3} + \left(3 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3)(2,5)$ |
| $(1,4)(3,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $5$ |
$2$ |
$(1,3)(2,5)$ |
$0$ |
$0$ |
| $2$ |
$5$ |
$(1,5,2,3,4)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2}$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ |
| $2$ |
$5$ |
$(1,2,4,5,3)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ |
$\zeta_{5}^{3} + \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.