Properties

Label 2.1187.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 1187 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1187 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 2 x^{7} + 16 x^{6} - 6 x^{5} + 2 x^{4} + 35 x^{3} - 36 x^{2} + 36 x - 16 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.1187.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 6 a^{2} + 3 a + 6 + \left(8 a^{2} + 6\right)\cdot 11 + \left(7 a^{2} + 8 a + 1\right)\cdot 11^{2} + \left(3 a^{2} + 3 a + 4\right)\cdot 11^{3} + \left(10 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 7 a + 9 + \left(7 a^{2} + a + 2\right)\cdot 11 + \left(a^{2} + 9 a + 1\right)\cdot 11^{2} + \left(4 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(9 a^{2} + 2 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 7 a + 8 + \left(7 a + 2\right)\cdot 11 + \left(a^{2} + 4 a\right)\cdot 11^{2} + \left(5 a + 4\right)\cdot 11^{3} + \left(6 a^{2} + 6 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 8 + \left(9 a^{2} + 6 a\right)\cdot 11 + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 5 a + 10\right)\cdot 11^{3} + \left(10 a^{2} + 10 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 7 a + 8 + \left(8 a^{2} + 2 a + 9\right)\cdot 11 + \left(4 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(9 a^{2} + 7 a + 4\right)\cdot 11^{3} + \left(4 a^{2} + 3 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 2 a + 7 + \left(5 a^{2} + 3 a + 6\right)\cdot 11 + \left(5 a^{2} + 10 a + 2\right)\cdot 11^{2} + \left(10 a^{2} + 6 a + 7\right)\cdot 11^{3} + \left(a^{2} + 8 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 5 a + 6 + \left(4 a^{2} + 8 a + 3\right)\cdot 11 + \left(2 a^{2} + 8 a + 9\right)\cdot 11^{2} + \left(10 a^{2} + 6 a + 2\right)\cdot 11^{3} + \left(3 a^{2} + 7 a\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 10 a + 3 + \left(5 a^{2} + 5 a + 9\right)\cdot 11 + \left(7 a^{2} + 8 a + 8\right)\cdot 11^{2} + \left(9 a + 4\right)\cdot 11^{3} + \left(a^{2} + 7 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + a + 2 + \left(5 a^{2} + 8 a + 2\right)\cdot 11 + 9 a^{2}11^{2} + 8 a^{2}11^{3} + \left(5 a^{2} + 8 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9)(2,3)(4,7)(6,8)$
$(1,9,5)(2,6,4)(3,7,8)$
$(1,6,8,9,4,3,5,2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,9)(2,3)(4,7)(6,8)$$0$
$2$$3$$(1,9,5)(2,6,4)(3,7,8)$$-1$
$2$$9$$(1,6,8,9,4,3,5,2,7)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,8,4,5,7,6,9,3,2)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,4,7,9,2,8,5,6,3)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.