Properties

Label 2.1152.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $1152$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1152\)\(\medspace = 2^{7} \cdot 3^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 4.0.4608.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.8.2t1.b.a
Projective image: $C_2^2$
Projective field: \(\Q(\zeta_{8})\)

Defining polynomial

$f(x)$$=$\(x^{4} - 6 x^{2} + 18\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 5 + 6\cdot 17 + 10\cdot 17^{2} + 11\cdot 17^{3} + 4\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 7 + 10\cdot 17 + 9\cdot 17^{2} + 8\cdot 17^{3} + 6\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 6\cdot 17 + 7\cdot 17^{2} + 8\cdot 17^{3} + 10\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 12 + 10\cdot 17 + 6\cdot 17^{2} + 5\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.