Properties

Label 2.1148.6t5.b
Dimension $2$
Group $S_3\times C_3$
Conductor $1148$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:\(1148\)\(\medspace = 2^{2} \cdot 7 \cdot 41 \)
Artin number field: Galois closure of 6.0.216136256.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Projective image: $S_3$
Projective field: 3.1.8036.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \(x^{2} + 12 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( a + \left(9 a + 6\right)\cdot 13 + \left(a + 11\right)\cdot 13^{2} + \left(10 a + 6\right)\cdot 13^{3} + \left(7 a + 12\right)\cdot 13^{4} + \left(4 a + 8\right)\cdot 13^{5} + \left(10 a + 12\right)\cdot 13^{6} +O(13^{7})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 1 + \left(3 a + 1\right)\cdot 13 + \left(11 a + 4\right)\cdot 13^{2} + \left(2 a + 2\right)\cdot 13^{3} + \left(5 a + 10\right)\cdot 13^{4} + \left(8 a + 5\right)\cdot 13^{5} + \left(2 a + 5\right)\cdot 13^{6} +O(13^{7})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 11 a + 9 + \left(5 a + 2\right)\cdot 13 + \left(12 a + 11\right)\cdot 13^{2} + \left(3 a + 10\right)\cdot 13^{3} + \left(3 a + 1\right)\cdot 13^{4} + \left(2 a + 6\right)\cdot 13^{5} + \left(12 a + 6\right)\cdot 13^{6} +O(13^{7})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 7 + \left(7 a + 10\right)\cdot 13 + 4\cdot 13^{2} + \left(9 a + 2\right)\cdot 13^{3} + \left(9 a + 1\right)\cdot 13^{4} + \left(10 a + 5\right)\cdot 13^{5} + 3\cdot 13^{6} +O(13^{7})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 10 a + 7 + \left(9 a + 9\right)\cdot 13 + \left(10 a + 9\right)\cdot 13^{2} + \left(6 a + 3\right)\cdot 13^{3} + \left(8 a + 12\right)\cdot 13^{4} + \left(10 a + 11\right)\cdot 13^{5} + \left(a + 9\right)\cdot 13^{6} +O(13^{7})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 4 + \left(3 a + 9\right)\cdot 13 + \left(2 a + 10\right)\cdot 13^{2} + \left(6 a + 12\right)\cdot 13^{3} + 4 a\cdot 13^{4} + \left(2 a + 1\right)\cdot 13^{5} + \left(11 a + 1\right)\cdot 13^{6} +O(13^{7})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6,3)$
$(1,3,5,2,4,6)$
$(1,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$ $0$
$1$ $3$ $(1,5,4)(2,6,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,4,5)(2,3,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(2,6,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(2,3,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,4)(2,3,6)$ $-1$ $-1$
$3$ $6$ $(1,3,5,2,4,6)$ $0$ $0$
$3$ $6$ $(1,6,4,2,5,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.