# Properties

 Label 2.1101.3t2.a.a Dimension 2 Group $S_3$ Conductor $3 \cdot 367$ Root number 1 Frobenius-Schur indicator 1

# Learn more about

## Basic invariants

 Dimension: $2$ Group: $S_3$ Conductor: $1101= 3 \cdot 367$ Artin number field: Splitting field of 3.3.1101.1 defined by $f= x^{3} - x^{2} - 9 x + 12$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: $S_3$ Parity: Even Determinant: 1.1101.2t1.a.a Projective image: $S_3$ Projective field: Galois closure of 3.3.1101.1

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
 $r_{ 1 }$ $=$ $12 + 12\cdot 31 + 28\cdot 31^{2} + 27\cdot 31^{3} +O\left(31^{ 5 }\right)$ $r_{ 2 }$ $=$ $25 + 20\cdot 31 + 17\cdot 31^{2} + 13\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$ $r_{ 3 }$ $=$ $26 + 28\cdot 31 + 15\cdot 31^{2} + 20\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$

### Generators of the action on the roots $r_{ 1 }, r_{ 2 }, r_{ 3 }$

 Cycle notation $(1,2,3)$ $(1,2)$

### Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }, r_{ 3 }$ Character value $1$ $1$ $()$ $2$ $3$ $2$ $(1,2)$ $0$ $2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.