Properties

Label 2.1087.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 1087 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1087 $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 5 x^{6} - 7 x^{4} + 39 x^{3} - 58 x^{2} + 47 x - 27 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.1087.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 27 a + 11 + \left(26 a^{2} + 23 a + 7\right)\cdot 41 + \left(23 a^{2} + 5 a + 12\right)\cdot 41^{2} + \left(25 a^{2} + a + 4\right)\cdot 41^{3} + \left(32 a^{2} + 12 a\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 a^{2} + 8 a + 21 + \left(2 a^{2} + 24 a + 29\right)\cdot 41 + \left(35 a^{2} + 25 a + 40\right)\cdot 41^{2} + \left(29 a^{2} + 38 a + 19\right)\cdot 41^{3} + \left(38 a^{2} + 3 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 23 a + 12 + \left(25 a^{2} + 8 a + 40\right)\cdot 41 + \left(23 a^{2} + 23 a + 1\right)\cdot 41^{2} + \left(27 a^{2} + 28 a + 31\right)\cdot 41^{3} + \left(34 a^{2} + 21 a + 15\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a^{2} + a + 19 + \left(20 a^{2} + 38 a + 3\right)\cdot 41 + \left(16 a^{2} + 20 a + 21\right)\cdot 41^{2} + \left(5 a^{2} + 2 a + 4\right)\cdot 41^{3} + \left(12 a^{2} + 32 a\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 8 a + 7 + \left(37 a^{2} + 14 a + 21\right)\cdot 41 + \left(33 a^{2} + 36 a + 22\right)\cdot 41^{2} + \left(29 a^{2} + 10 a + 32\right)\cdot 41^{3} + \left(14 a^{2} + 30 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 13 a + 24 + \left(35 a^{2} + 20 a + 40\right)\cdot 41 + \left(14 a + 37\right)\cdot 41^{2} + \left(10 a^{2} + 37 a + 34\right)\cdot 41^{3} + \left(37 a^{2} + 37 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 31 a^{2} + 20 a + 19 + \left(30 a^{2} + 17 a + 34\right)\cdot 41 + \left(20 a^{2} + 20 a + 3\right)\cdot 41^{2} + \left(35 a^{2} + 32 a + 10\right)\cdot 41^{3} + \left(12 a^{2} + 33 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 26 a^{2} + 10 a + 15 + \left(19 a^{2} + 18 a + 9\right)\cdot 41 + \left(24 a^{2} + 22 a + 16\right)\cdot 41^{2} + \left(24 a^{2} + a + 15\right)\cdot 41^{3} + \left(32 a^{2} + 30 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 17 a^{2} + 13 a + 37 + \left(7 a^{2} + 40 a + 18\right)\cdot 41 + \left(26 a^{2} + 35 a + 7\right)\cdot 41^{2} + \left(16 a^{2} + 10 a + 11\right)\cdot 41^{3} + \left(30 a^{2} + 3 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6,4)(2,7,9)(3,8,5)$
$(1,5,2,6,3,7,4,8,9)$
$(1,4)(2,3)(5,7)(8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,4)(2,3)(5,7)(8,9)$$0$
$2$$3$$(1,6,4)(2,7,9)(3,8,5)$$-1$
$2$$9$$(1,5,2,6,3,7,4,8,9)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,2,3,4,9,5,6,7,8)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,3,9,6,8,2,4,5,7)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.