Basic invariants
| Dimension: | $2$ |
| Group: | $D_{6}$ |
| Conductor: | \(1083\)\(\medspace = 3 \cdot 19^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.0.22284891.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{6}$ |
| Parity: | odd |
| Projective image: | $S_3$ |
| Projective field: | Galois closure of 3.1.1083.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{2} + 7x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 8 a + 10 + \left(a + 7\right)\cdot 11 + 7\cdot 11^{2} + \left(10 a + 10\right)\cdot 11^{3} + \left(6 a + 3\right)\cdot 11^{4} + \left(a + 7\right)\cdot 11^{5} + \left(a + 8\right)\cdot 11^{6} +O(11^{7})\)
|
| $r_{ 2 }$ | $=$ |
\( 8 + 3\cdot 11 + 3\cdot 11^{2} + 6\cdot 11^{3} + 3\cdot 11^{4} + 3\cdot 11^{5} + 9\cdot 11^{6} +O(11^{7})\)
|
| $r_{ 3 }$ | $=$ |
\( 3 a + 9 + \left(9 a + 6\right)\cdot 11 + \left(10 a + 6\right)\cdot 11^{2} + 6\cdot 11^{3} + \left(4 a + 10\right)\cdot 11^{4} + \left(9 a + 6\right)\cdot 11^{5} + 9 a\cdot 11^{6} +O(11^{7})\)
|
| $r_{ 4 }$ | $=$ |
\( 3 a + 1 + \left(9 a + 3\right)\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(4 a + 7\right)\cdot 11^{4} + \left(9 a + 3\right)\cdot 11^{5} + \left(9 a + 2\right)\cdot 11^{6} +O(11^{7})\)
|
| $r_{ 5 }$ | $=$ |
\( 3 + 7\cdot 11 + 7\cdot 11^{2} + 4\cdot 11^{3} + 7\cdot 11^{4} + 7\cdot 11^{5} + 11^{6} +O(11^{7})\)
|
| $r_{ 6 }$ | $=$ |
\( 8 a + 2 + \left(a + 4\right)\cdot 11 + 4\cdot 11^{2} + \left(10 a + 4\right)\cdot 11^{3} + 6 a\cdot 11^{4} + \left(a + 4\right)\cdot 11^{5} + \left(a + 10\right)\cdot 11^{6} +O(11^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
| $3$ | $2$ | $(2,6)(3,5)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |