# Properties

 Label 2.103.5t2.a.a Dimension $2$ Group $D_{5}$ Conductor $103$ Root number $1$ Indicator $1$

# Related objects

## Basic invariants

 Dimension: $2$ Group: $D_{5}$ Conductor: $$103$$ Frobenius-Schur indicator: $1$ Root number: $1$ Artin number field: Galois closure of 5.1.10609.1 Galois orbit size: $2$ Smallest permutation container: $D_{5}$ Parity: odd Determinant: 1.103.2t1.a.a Projective image: $D_5$ Projective field: Galois closure of 5.1.10609.1

## Defining polynomial

 $f(x)$ $=$ $x^{5} - 2 x^{4} + 3 x^{3} - 3 x^{2} + x + 1$.

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $x^{2} + 7 x + 2$

Roots:
 $r_{ 1 }$ $=$ $7 a + 1 + \left(5 a + 2\right)\cdot 11 + \left(7 a + 1\right)\cdot 11^{2} + \left(4 a + 3\right)\cdot 11^{3} + \left(8 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ $r_{ 2 }$ $=$ $8 a + \left(5 a + 7\right)\cdot 11 + \left(10 a + 5\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(4 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ $r_{ 3 }$ $=$ $3 a + 10 + \left(5 a + 10\right)\cdot 11 + 8\cdot 11^{2} + \left(7 a + 7\right)\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ $r_{ 4 }$ $=$ $4 a + 7 + \left(5 a + 6\right)\cdot 11 + \left(3 a + 3\right)\cdot 11^{2} + \left(6 a + 3\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ $r_{ 5 }$ $=$ $6 + 6\cdot 11 + 2\cdot 11^{2} + 5\cdot 11^{3} + 3\cdot 11^{4} +O\left(11^{ 5 }\right)$

## Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

 Cycle notation $(1,2)(3,5)$ $(1,3)(4,5)$

## Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 5 }$ Character value $1$ $1$ $()$ $2$ $5$ $2$ $(1,2)(3,5)$ $0$ $2$ $5$ $(1,5,4,3,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2}$ $2$ $5$ $(1,4,2,5,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$

The blue line marks the conjugacy class containing complex conjugation.