Properties

Label 16.769e8_3253e8.36t1252.1c1
Dimension 16
Group $S_6$
Conductor $ 769^{8} \cdot 3253^{8}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$1533498037985327768718256222458042449461677622428001= 769^{8} \cdot 3253^{8} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 3 x^{3} + 9 x^{2} - 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 75 + 39\cdot 101 + 89\cdot 101^{2} + 93\cdot 101^{3} + 45\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 65\cdot 101 + 60\cdot 101^{2} + 76\cdot 101^{3} + 21\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 a + 20 + \left(76 a + 42\right)\cdot 101 + \left(27 a + 24\right)\cdot 101^{2} + \left(24 a + 93\right)\cdot 101^{3} + \left(67 a + 9\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 a + 79 + \left(24 a + 4\right)\cdot 101 + \left(73 a + 59\right)\cdot 101^{2} + \left(76 a + 61\right)\cdot 101^{3} + \left(33 a + 52\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 3\cdot 101 + 99\cdot 101^{2} + 65\cdot 101^{3} + 87\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 46\cdot 101 + 71\cdot 101^{2} + 12\cdot 101^{3} + 85\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$16$
$15$$2$$(1,2)(3,4)(5,6)$$0$
$15$$2$$(1,2)$$0$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-2$
$40$$3$$(1,2,3)$$-2$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.