Basic invariants
Dimension: | $16$ |
Group: | $S_3\wr S_3$ |
Conductor: | \(535\!\cdots\!625\)\(\medspace = 5^{12} \cdot 23^{12} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.1.874503125.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T2912 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $S_3\wr S_3$ |
Projective stem field: | Galois closure of 9.1.874503125.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 2x^{8} + 7x^{7} - 14x^{6} + 23x^{5} - 31x^{4} + 30x^{3} - 20x^{2} + 8x - 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$:
\( x^{3} + x + 35 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 40 a^{2} + 39 a + 33 + \left(33 a^{2} + 27 a + 38\right)\cdot 41 + \left(13 a^{2} + 4 a + 6\right)\cdot 41^{2} + \left(17 a^{2} + 40 a + 24\right)\cdot 41^{3} + \left(36 a^{2} + 7 a + 35\right)\cdot 41^{4} + \left(21 a^{2} + 18 a + 6\right)\cdot 41^{5} + \left(2 a^{2} + 23 a + 21\right)\cdot 41^{6} + \left(27 a^{2} + 19 a + 5\right)\cdot 41^{7} + \left(32 a^{2} + 6 a + 15\right)\cdot 41^{8} + \left(37 a^{2} + 8 a + 1\right)\cdot 41^{9} +O(41^{10})\)
$r_{ 2 }$ |
$=$ |
\( 34 a^{2} + 11 a + 13 + \left(8 a^{2} + 38 a + 10\right)\cdot 41 + \left(25 a^{2} + 9 a + 36\right)\cdot 41^{2} + \left(22 a^{2} + 6 a + 17\right)\cdot 41^{3} + \left(16 a^{2} + 7 a + 40\right)\cdot 41^{4} + \left(3 a^{2} + 7 a + 36\right)\cdot 41^{5} + \left(28 a^{2} + 6 a + 36\right)\cdot 41^{6} + \left(12 a^{2} + 28 a + 17\right)\cdot 41^{7} + \left(9 a^{2} + 32 a + 35\right)\cdot 41^{8} + \left(28 a^{2} + 3 a + 35\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 24 a^{2} + 40 a + 36 + \left(23 a^{2} + 39 a + 31\right)\cdot 41 + \left(18 a^{2} + 18 a + 23\right)\cdot 41^{2} + \left(35 a^{2} + 4 a + 22\right)\cdot 41^{3} + \left(17 a + 25\right)\cdot 41^{4} + \left(7 a^{2} + 37 a + 10\right)\cdot 41^{5} + \left(2 a^{2} + 12 a + 7\right)\cdot 41^{6} + \left(24 a^{2} + 4 a + 17\right)\cdot 41^{7} + \left(6 a^{2} + 3 a + 11\right)\cdot 41^{8} + \left(4 a^{2} + 37 a + 6\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 3 a^{2} + 33 a + 6 + 14 a^{2} 41 + \left(15 a^{2} + a + 16\right)\cdot 41^{2} + \left(31 a^{2} + 14 a + 37\right)\cdot 41^{3} + \left(22 a^{2} + 16 a + 30\right)\cdot 41^{4} + \left(32 a^{2} + 22 a + 1\right)\cdot 41^{5} + \left(8 a^{2} + 28 a + 24\right)\cdot 41^{6} + \left(19 a^{2} + 39 a + 8\right)\cdot 41^{7} + \left(8 a^{2} + 2 a + 21\right)\cdot 41^{8} + \left(37 a^{2} + 18 a + 14\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 18 a^{2} + 19 a + 16 + \left(7 a^{2} + 2 a + 25\right)\cdot 41 + \left(27 a^{2} + 3 a + 14\right)\cdot 41^{2} + \left(2 a^{2} + 22 a + 27\right)\cdot 41^{3} + \left(11 a^{2} + 17 a + 7\right)\cdot 41^{4} + \left(30 a^{2} + 5 a + 34\right)\cdot 41^{5} + \left(14 a^{2} + 33 a + 26\right)\cdot 41^{6} + \left(39 a^{2} + 7 a + 15\right)\cdot 41^{7} + \left(24 a^{2} + 12 a + 21\right)\cdot 41^{8} + \left(10 a^{2} + 23 a + 27\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 18 a^{2} + 3 a + 32 + \left(24 a^{2} + 14 a + 18\right)\cdot 41 + \left(8 a^{2} + 17 a + 3\right)\cdot 41^{2} + \left(29 a^{2} + 37 a + 32\right)\cdot 41^{3} + \left(3 a^{2} + 15 a + 13\right)\cdot 41^{4} + \left(12 a^{2} + 26 a\right)\cdot 41^{5} + \left(36 a^{2} + 4 a + 30\right)\cdot 41^{6} + \left(30 a^{2} + 17 a + 21\right)\cdot 41^{7} + \left(a^{2} + 31 a + 35\right)\cdot 41^{8} + \left(40 a^{2} + 36 a + 2\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 23 a^{2} + 23 a + 33 + \left(20 a^{2} + 26 a + 6\right)\cdot 41 + \left(24 a^{2} + 8 a + 40\right)\cdot 41^{2} + \left(a^{2} + 23 a + 12\right)\cdot 41^{3} + \left(12 a^{2} + 27 a + 8\right)\cdot 41^{4} + \left(31 a^{2} + 7 a + 21\right)\cdot 41^{5} + \left(37 a^{2} + 36 a + 28\right)\cdot 41^{6} + \left(25 a^{2} + 26 a + 6\right)\cdot 41^{7} + \left(14 a^{2} + 27 a + 28\right)\cdot 41^{8} + \left(26 a^{2} + 19 a + 10\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 4 a^{2} + 38 a + 34 + \left(18 a^{2} + a + 2\right)\cdot 41 + \left(30 a + 6\right)\cdot 41^{2} + \left(28 a^{2} + 20 a + 35\right)\cdot 41^{3} + \left(a^{2} + 17 a + 16\right)\cdot 41^{4} + \left(5 a^{2} + 11 a + 24\right)\cdot 41^{5} + \left(4 a^{2} + 6 a + 34\right)\cdot 41^{6} + \left(9 a^{2} + 14 a + 1\right)\cdot 41^{7} + \left(23 a^{2} + 5 a + 31\right)\cdot 41^{8} + \left(16 a^{2} + 19 a\right)\cdot 41^{9} +O(41^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 40 a + 4 + \left(13 a^{2} + 11 a + 29\right)\cdot 41 + \left(30 a^{2} + 29 a + 16\right)\cdot 41^{2} + \left(36 a^{2} + 36 a + 36\right)\cdot 41^{3} + \left(17 a^{2} + 36 a + 25\right)\cdot 41^{4} + \left(20 a^{2} + 27 a + 27\right)\cdot 41^{5} + \left(29 a^{2} + 12 a + 36\right)\cdot 41^{6} + \left(16 a^{2} + 6 a + 27\right)\cdot 41^{7} + \left(a^{2} + a + 5\right)\cdot 41^{8} + \left(4 a^{2} + 39 a + 23\right)\cdot 41^{9} +O(41^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(4,5)$ | $0$ |
$18$ | $2$ | $(2,4)(3,5)(6,7)$ | $0$ |
$27$ | $2$ | $(2,3)(4,5)$ | $0$ |
$27$ | $2$ | $(1,8)(2,3)(4,5)$ | $0$ |
$54$ | $2$ | $(1,4)(2,3)(5,8)(6,9)$ | $0$ |
$6$ | $3$ | $(1,8,9)$ | $-8$ |
$8$ | $3$ | $(1,8,9)(2,3,7)(4,5,6)$ | $-2$ |
$12$ | $3$ | $(1,8,9)(4,5,6)$ | $4$ |
$72$ | $3$ | $(1,4,2)(3,8,5)(6,7,9)$ | $-2$ |
$54$ | $4$ | $(2,5,3,4)(6,7)$ | $0$ |
$162$ | $4$ | $(1,4,8,5)(2,3)(6,9)$ | $0$ |
$36$ | $6$ | $(1,8,9)(2,4)(3,5)(6,7)$ | $0$ |
$36$ | $6$ | $(1,5,8,6,9,4)$ | $0$ |
$36$ | $6$ | $(1,8,9)(4,5)$ | $0$ |
$36$ | $6$ | $(1,8,9)(2,3,7)(4,5)$ | $0$ |
$54$ | $6$ | $(1,9,8)(2,3)(4,5)$ | $0$ |
$72$ | $6$ | $(1,8,9)(2,6,7,5,3,4)$ | $0$ |
$108$ | $6$ | $(1,5,8,6,9,4)(2,3)$ | $0$ |
$216$ | $6$ | $(1,4,3,8,5,2)(6,7,9)$ | $0$ |
$144$ | $9$ | $(1,5,3,8,6,7,9,4,2)$ | $1$ |
$108$ | $12$ | $(1,8,9)(2,5,3,4)(6,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.