Properties

Label 16.525...625.24t1334.a
Dimension $16$
Group $((C_3^2:Q_8):C_3):C_2$
Conductor $5.252\times 10^{25}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$16$
Group:$((C_3^2:Q_8):C_3):C_2$
Conductor:\(525\!\cdots\!625\)\(\medspace = 3^{8} \cdot 5^{10} \cdot 31^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.3.374415615421875.1
Galois orbit size: $1$
Smallest permutation container: 24T1334
Parity: even
Projective image: $C_3^2:\GL(2,3)$
Projective field: Galois closure of 9.3.374415615421875.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{4} + 3x^{2} + 12x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 8 + 4\cdot 13 + 11\cdot 13^{3} + 2\cdot 13^{4} + 12\cdot 13^{5} + 3\cdot 13^{6} + 5\cdot 13^{7} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a^{3} + 8 a^{2} + 6 + \left(8 a^{3} + 2 a^{2} + 7 a + 2\right)\cdot 13 + \left(10 a^{3} + 4 a^{2} + 7\right)\cdot 13^{2} + \left(8 a^{3} + 8 a^{2} + 6 a + 11\right)\cdot 13^{3} + \left(7 a^{3} + 12 a^{2} + 10 a + 3\right)\cdot 13^{4} + \left(9 a^{3} + 7 a^{2} + 8 a + 10\right)\cdot 13^{5} + \left(7 a^{3} + 3 a^{2}\right)\cdot 13^{6} + \left(2 a^{3} + 9 a^{2} + 9 a + 10\right)\cdot 13^{7} + \left(a^{3} + 6 a^{2} + 4 a + 9\right)\cdot 13^{8} + \left(11 a^{3} + 11 a + 6\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a^{3} + 2 a^{2} + 9 a + \left(10 a^{3} + 4 a^{2} + 5 a + 7\right)\cdot 13 + \left(9 a^{3} + 9 a^{2} + 11 a\right)\cdot 13^{2} + \left(5 a^{3} + 5 a^{2} + 3 a + 6\right)\cdot 13^{3} + \left(2 a^{3} + 5 a + 3\right)\cdot 13^{4} + \left(10 a^{3} + 3 a^{2} + 3 a + 8\right)\cdot 13^{5} + \left(11 a^{3} + 11 a^{2} + 2 a + 9\right)\cdot 13^{6} + \left(6 a^{3} + 4 a^{2} + 9\right)\cdot 13^{7} + \left(a^{3} + 8 a^{2} + 11 a + 8\right)\cdot 13^{8} + \left(4 a^{3} + 10 a^{2} + 2 a + 4\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{3} + 6 a + 4 + \left(11 a^{3} + a^{2} + 2 a + 10\right)\cdot 13 + \left(3 a^{3} + 10 a^{2} + 5 a + 11\right)\cdot 13^{2} + \left(7 a^{3} + 4 a^{2} + 6 a\right)\cdot 13^{3} + \left(2 a^{3} + 11 a^{2} + 12 a\right)\cdot 13^{4} + \left(a^{3} + 2 a^{2} + 2 a + 9\right)\cdot 13^{5} + \left(5 a^{3} + 7 a + 5\right)\cdot 13^{6} + \left(10 a^{3} + 12 a^{2} + 12 a + 7\right)\cdot 13^{7} + \left(5 a^{3} + 7 a^{2} + a + 3\right)\cdot 13^{8} + \left(9 a^{3} + a^{2} + 12\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 a^{3} + 5 a^{2} + 5 a + \left(5 a^{3} + 8 a^{2} + 8 a + 5\right)\cdot 13 + \left(8 a^{3} + a^{2} + 5 a + 9\right)\cdot 13^{2} + \left(4 a^{3} + 8 a^{2} + 12 a + 12\right)\cdot 13^{3} + \left(4 a^{3} + 3 a^{2} + 9 a + 5\right)\cdot 13^{4} + \left(12 a^{3} + 7 a + 10\right)\cdot 13^{5} + \left(5 a^{3} + 9 a^{2} + 3 a + 5\right)\cdot 13^{6} + \left(9 a^{3} + 12 a^{2} + 5 a + 5\right)\cdot 13^{7} + \left(a^{3} + 12 a^{2} + 8 a + 4\right)\cdot 13^{8} + \left(5 a^{3} + 6 a^{2} + 9 a + 8\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a^{3} + 9 a^{2} + 11 a + 7 + \left(5 a + 2\right)\cdot 13 + \left(3 a^{3} + 8 a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(6 a^{3} + 11 a^{2} + 7 a + 8\right)\cdot 13^{3} + \left(4 a^{2} + 7 a + 10\right)\cdot 13^{4} + \left(11 a^{3} + 3 a^{2}\right)\cdot 13^{5} + \left(3 a^{3} + 4 a^{2} + a + 7\right)\cdot 13^{6} + \left(7 a^{3} + 5 a^{2} + 4 a + 8\right)\cdot 13^{7} + \left(7 a^{2} + 3 a + 7\right)\cdot 13^{8} + \left(3 a^{3} + 4 a^{2} + 9 a + 4\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( a^{3} + 9 a^{2} + 1 + \left(5 a^{3} + a^{2} + 10 a\right)\cdot 13 + \left(8 a^{3} + 12 a^{2} + a + 10\right)\cdot 13^{2} + \left(11 a^{3} + 8 a^{2} + 3 a\right)\cdot 13^{3} + \left(11 a^{3} + 5 a^{2} + 6 a + 4\right)\cdot 13^{4} + \left(4 a^{3} + 11 a^{2} + 8 a + 3\right)\cdot 13^{5} + \left(8 a^{3} + 12 a^{2} + 12 a + 2\right)\cdot 13^{6} + \left(9 a^{3} + 5 a^{2} + 11\right)\cdot 13^{7} + \left(12 a^{3} + 3 a^{2} + 2 a\right)\cdot 13^{8} + \left(9 a^{3} + 12 a^{2} + 3 a + 7\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( a^{3} + 11 a^{2} + 12 a + 10 + \left(a^{3} + 10 a^{2} + 4 a + 4\right)\cdot 13 + \left(10 a^{3} + 10 a^{2} + 8 a + 5\right)\cdot 13^{2} + \left(6 a^{3} + 3 a^{2} + 3 a + 12\right)\cdot 13^{3} + \left(11 a^{3} + 9 a^{2}\right)\cdot 13^{4} + \left(6 a^{3} + a^{2} + 6 a + 9\right)\cdot 13^{5} + \left(2 a^{2} + 6 a + 11\right)\cdot 13^{6} + \left(7 a^{3} + 12 a^{2} + 11 a + 8\right)\cdot 13^{7} + \left(8 a^{3} + 10 a^{2} + a + 10\right)\cdot 13^{8} + \left(5 a^{3} + 7 a^{2} + 2 a + 7\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( a^{3} + 8 a^{2} + 9 a + 6 + \left(9 a^{3} + 9 a^{2} + 7 a + 2\right)\cdot 13 + \left(10 a^{3} + 8 a^{2} + 11 a + 6\right)\cdot 13^{2} + \left(8 a + 1\right)\cdot 13^{3} + \left(11 a^{3} + 4 a^{2} + 12 a + 7\right)\cdot 13^{4} + \left(8 a^{3} + 8 a^{2} + 1\right)\cdot 13^{5} + \left(8 a^{3} + 8 a^{2} + 5 a + 5\right)\cdot 13^{6} + \left(11 a^{3} + 2 a^{2} + 8 a + 11\right)\cdot 13^{7} + \left(6 a^{3} + 7 a^{2} + 5 a + 5\right)\cdot 13^{8} + \left(3 a^{3} + 7 a^{2}\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,7,5)$
$(1,9,7,8)(2,5,4,3)$
$(1,5,8)(3,9,7)$
$(1,3,2)(4,5,7)(6,8,9)$
$(1,5,8)(2,4,6)(3,7,9)$
$(1,5,2,3,6,4,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$9$ $2$ $(1,6)(2,8)(3,9)(4,5)$ $0$
$36$ $2$ $(4,6)(5,8)(7,9)$ $0$
$8$ $3$ $(1,3,2)(4,5,7)(6,8,9)$ $-2$
$24$ $3$ $(1,8,5)(3,7,9)$ $-2$
$48$ $3$ $(1,9,2)(3,4,5)(6,8,7)$ $1$
$54$ $4$ $(1,2,6,8)(3,4,9,5)$ $0$
$72$ $6$ $(1,8,9,7,4,2)(3,5,6)$ $0$
$72$ $6$ $(2,8,9,3,5,4)(6,7)$ $0$
$54$ $8$ $(1,5,2,3,6,4,8,9)$ $0$
$54$ $8$ $(1,4,2,9,6,5,8,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.