Properties

Label 16.447...864.24t2912.a
Dimension $16$
Group $S_3\wr S_3$
Conductor $4.472\times 10^{25}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$16$
Group:$S_3\wr S_3$
Conductor:\(447\!\cdots\!864\)\(\medspace = 2^{44} \cdot 3^{26}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.1.13060694016.1
Galois orbit size: $1$
Smallest permutation container: 24T2912
Parity: even
Projective image: $C_3^3.S_4.C_2$
Projective field: Galois closure of 9.1.13060694016.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: \( x^{3} + 3x + 99 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 66 a^{2} + 38 a + 91 + \left(20 a^{2} + 72 a + 42\right)\cdot 101 + \left(31 a^{2} + 100 a + 23\right)\cdot 101^{2} + \left(38 a^{2} + 31 a + 21\right)\cdot 101^{3} + \left(41 a^{2} + 69 a + 14\right)\cdot 101^{4} + \left(22 a^{2} + 54 a + 70\right)\cdot 101^{5} + \left(58 a^{2} + 48 a + 9\right)\cdot 101^{6} + \left(81 a^{2} + 84 a + 88\right)\cdot 101^{7} + \left(58 a^{2} + 57 a + 54\right)\cdot 101^{8} + \left(84 a^{2} + 49 a + 34\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 95 a^{2} + 19 a + 26 + \left(99 a^{2} + 75 a + 22\right)\cdot 101 + \left(6 a^{2} + 21 a + 57\right)\cdot 101^{2} + \left(55 a^{2} + 97 a + 14\right)\cdot 101^{3} + \left(29 a + 29\right)\cdot 101^{4} + \left(37 a^{2} + 53 a + 84\right)\cdot 101^{5} + \left(75 a^{2} + 20 a + 66\right)\cdot 101^{6} + \left(74 a^{2} + 27 a + 54\right)\cdot 101^{7} + \left(15 a^{2} + 17 a + 51\right)\cdot 101^{8} + \left(26 a^{2} + 32 a + 87\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 71 a^{2} + 42 a + \left(9 a^{2} + 88 a + 21\right)\cdot 101 + \left(92 a^{2} + 80 a + 44\right)\cdot 101^{2} + \left(72 a^{2} + 95 a + 90\right)\cdot 101^{3} + \left(88 a^{2} + 15 a + 7\right)\cdot 101^{4} + \left(46 a^{2} + 25 a + 18\right)\cdot 101^{5} + \left(84 a^{2} + 30 a + 62\right)\cdot 101^{6} + \left(50 a^{2} + 30 a + 26\right)\cdot 101^{7} + \left(96 a^{2} + 96 a + 29\right)\cdot 101^{8} + \left(23 a^{2} + 31 a + 14\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 40 a^{2} + 36 a + 17 + \left(11 a^{2} + a + 47\right)\cdot 101 + \left(11 a^{2} + 36 a + 65\right)\cdot 101^{2} + \left(49 a^{2} + 82 a + 2\right)\cdot 101^{3} + \left(69 a^{2} + 82 a + 66\right)\cdot 101^{4} + \left(88 a^{2} + 79 a + 86\right)\cdot 101^{5} + \left(30 a^{2} + 90 a + 78\right)\cdot 101^{6} + \left(53 a^{2} + 27 a + 11\right)\cdot 101^{7} + \left(96 a^{2} + 88 a + 11\right)\cdot 101^{8} + \left(23 a^{2} + 28 a + 83\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 66 a^{2} + 88 a + 34 + \left(18 a^{2} + 15 a + 11\right)\cdot 101 + \left(55 a^{2} + 6 a + 5\right)\cdot 101^{2} + \left(88 a^{2} + 99 a + 25\right)\cdot 101^{3} + \left(48 a^{2} + 51 a + 37\right)\cdot 101^{4} + \left(36 a^{2} + 30 a + 37\right)\cdot 101^{5} + \left(11 a^{2} + 46 a + 11\right)\cdot 101^{6} + \left(2 a^{2} + 58 a + 73\right)\cdot 101^{7} + \left(52 a^{2} + 6 a + 45\right)\cdot 101^{8} + \left(73 a^{2} + 73 a + 44\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 65 a^{2} + 21 a + 89 + \left(70 a^{2} + 41 a + 41\right)\cdot 101 + \left(78 a^{2} + 20 a + 17\right)\cdot 101^{2} + \left(90 a^{2} + 74 a + 25\right)\cdot 101^{3} + \left(71 a^{2} + 15 a + 75\right)\cdot 101^{4} + \left(31 a^{2} + 21 a + 88\right)\cdot 101^{5} + \left(59 a^{2} + 22 a + 11\right)\cdot 101^{6} + \left(69 a^{2} + 87 a + 64\right)\cdot 101^{7} + \left(46 a^{2} + 47 a + 30\right)\cdot 101^{8} + \left(93 a^{2} + 19 a + 52\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 67 a^{2} + 46 a + 71 + \left(90 a^{2} + 24 a + 3\right)\cdot 101 + \left(82 a^{2} + 43 a + 7\right)\cdot 101^{2} + \left(97 a^{2} + 22 a + 100\right)\cdot 101^{3} + \left(30 a^{2} + 89 a + 89\right)\cdot 101^{4} + \left(76 a^{2} + 68 a + 61\right)\cdot 101^{5} + \left(95 a^{2} + 90 a + 6\right)\cdot 101^{6} + \left(73 a^{2} + 45 a + 53\right)\cdot 101^{7} + \left(89 a^{2} + 96 a + 98\right)\cdot 101^{8} + \left(50 a^{2} + 39 a + 35\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 44 a^{2} + 91 a + 91 + \left(86 a^{2} + 90 a + 45\right)\cdot 101 + \left(17 a^{2} + 11 a + 31\right)\cdot 101^{2} + \left(2 a^{2} + 84 a + 54\right)\cdot 101^{3} + \left(53 a^{2} + 40 a + 45\right)\cdot 101^{4} + \left(60 a^{2} + 100 a + 85\right)\cdot 101^{5} + \left(8 a^{2} + 46 a + 5\right)\cdot 101^{6} + \left(42 a^{2} + 72 a + 52\right)\cdot 101^{7} + \left(23 a^{2} + 79 a + 89\right)\cdot 101^{8} + \left(86 a^{2} + 79 a + 69\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 92 a^{2} + 23 a + 86 + \left(96 a^{2} + 95 a + 66\right)\cdot 101 + \left(27 a^{2} + 82 a + 51\right)\cdot 101^{2} + \left(10 a^{2} + 18 a + 70\right)\cdot 101^{3} + \left(100 a^{2} + 8 a + 38\right)\cdot 101^{4} + \left(3 a^{2} + 71 a + 73\right)\cdot 101^{5} + \left(81 a^{2} + 7 a + 49\right)\cdot 101^{6} + \left(56 a^{2} + 71 a + 81\right)\cdot 101^{7} + \left(25 a^{2} + 14 a + 93\right)\cdot 101^{8} + \left(42 a^{2} + 49 a + 82\right)\cdot 101^{9} +O(101^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,5)(2,4,6)(7,8,9)$
$(3,4,9)$
$(5,6,7)$
$(5,6)$
$(1,2,8)$
$(1,5)(2,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$9$ $2$ $(5,6)$ $0$
$18$ $2$ $(1,5)(2,6)(7,8)$ $0$
$27$ $2$ $(1,2)(3,4)(5,6)$ $0$
$27$ $2$ $(1,2)(5,6)$ $0$
$54$ $2$ $(1,3)(2,4)(5,6)(8,9)$ $0$
$6$ $3$ $(3,4,9)$ $-8$
$8$ $3$ $(1,2,8)(3,4,9)(5,6,7)$ $-2$
$12$ $3$ $(1,2,8)(3,4,9)$ $4$
$72$ $3$ $(1,3,5)(2,4,6)(7,8,9)$ $-2$
$54$ $4$ $(1,5,2,6)(7,8)$ $0$
$162$ $4$ $(2,8)(3,5,4,6)(7,9)$ $0$
$36$ $6$ $(1,5)(2,6)(3,4,9)(7,8)$ $0$
$36$ $6$ $(3,6,4,7,9,5)$ $0$
$36$ $6$ $(3,4,9)(5,6)$ $0$
$36$ $6$ $(1,2,8)(3,4,9)(5,6)$ $0$
$54$ $6$ $(1,2)(3,9,4)(5,6)$ $0$
$72$ $6$ $(1,6,2,7,8,5)(3,4,9)$ $0$
$108$ $6$ $(1,3,2,4,8,9)(5,6)$ $0$
$216$ $6$ $(1,3,5,2,4,6)(7,8,9)$ $0$
$144$ $9$ $(1,3,6,2,4,7,8,9,5)$ $1$
$108$ $12$ $(1,5,2,6)(3,4,9)(7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.