Properties

Label 16.41e8_1429e8.36t1252.1
Dimension 16
Group $S_6$
Conductor $ 41^{8} \cdot 1429^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$138844501028920222410235688109816274081= 41^{8} \cdot 1429^{8} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + x^{3} - 4 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 67 a + 5 + \left(41 a + 60\right)\cdot 97 + \left(80 a + 34\right)\cdot 97^{2} + \left(12 a + 48\right)\cdot 97^{3} + 51 a\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 44 + \left(39 a + 3\right)\cdot 97 + \left(6 a + 81\right)\cdot 97^{2} + \left(2 a + 55\right)\cdot 97^{3} + \left(18 a + 32\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 72\cdot 97 + 36\cdot 97^{2} + 12\cdot 97^{3} + 55\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 a + 72 + \left(55 a + 34\right)\cdot 97 + \left(16 a + 73\right)\cdot 97^{2} + \left(84 a + 77\right)\cdot 97^{3} + \left(45 a + 38\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 85 a + 56 + \left(57 a + 30\right)\cdot 97 + \left(90 a + 48\right)\cdot 97^{2} + \left(94 a + 51\right)\cdot 97^{3} + \left(78 a + 48\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 + 89\cdot 97 + 16\cdot 97^{2} + 45\cdot 97^{3} + 18\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.