Properties

Label 16.3e32_11e14.36t1252.2
Dimension 16
Group $S_6$
Conductor $ 3^{32} \cdot 11^{14}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$703684108342872429458689596681= 3^{32} \cdot 11^{14} $
Artin number field: Splitting field of $f= x^{6} - 44 x^{3} + 99 x^{2} - 66 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 35 + \left(24 a + 35\right)\cdot 47 + \left(3 a + 44\right)\cdot 47^{2} + \left(43 a + 44\right)\cdot 47^{3} + \left(38 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 33\cdot 47 + 43\cdot 47^{2} + 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 2 + \left(18 a + 19\right)\cdot 47 + \left(44 a + 39\right)\cdot 47^{2} + \left(14 a + 7\right)\cdot 47^{3} + \left(a + 11\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 30 + \left(28 a + 41\right)\cdot 47 + \left(2 a + 15\right)\cdot 47^{2} + \left(32 a + 40\right)\cdot 47^{3} + \left(45 a + 45\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 + 3\cdot 47 + 17\cdot 47^{2} + 12\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 1 + \left(22 a + 8\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(3 a + 33\right)\cdot 47^{3} + \left(8 a + 29\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.