Basic invariants
Dimension: | $16$ |
Group: | $((C_3^2:Q_8):C_3):C_2$ |
Conductor: | \(388\!\cdots\!944\)\(\medspace = 2^{48} \cdot 13^{10} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.20245104295936.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T1334 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_3^2:\GL(2,3)$ |
Projective stem field: | Galois closure of 9.3.20245104295936.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - x^{8} - 2x^{7} + 14x^{6} - 5x^{5} + x^{4} - 10x^{3} - 2x^{2} - 85x - 131 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$:
\( x^{4} + 4x^{2} + 72x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 49 + 59\cdot 89 + 57\cdot 89^{2} + 53\cdot 89^{4} + 45\cdot 89^{5} + 15\cdot 89^{6} + 20\cdot 89^{7} + 48\cdot 89^{8} + 78\cdot 89^{9} +O(89^{10})\)
$r_{ 2 }$ |
$=$ |
\( 79 a^{3} + 60 a^{2} + 6 a + 74 + \left(69 a^{3} + 29 a^{2} + 68 a + 75\right)\cdot 89 + \left(23 a^{3} + 34 a^{2} + 78 a + 13\right)\cdot 89^{2} + \left(38 a^{3} + 45 a^{2} + 30 a + 5\right)\cdot 89^{3} + \left(65 a^{3} + 39 a^{2} + 9 a + 75\right)\cdot 89^{4} + \left(61 a^{3} + 57 a^{2} + 10 a + 56\right)\cdot 89^{5} + \left(79 a^{3} + 68 a^{2} + 67 a + 1\right)\cdot 89^{6} + \left(26 a^{3} + 7 a^{2} + 64 a + 50\right)\cdot 89^{7} + \left(23 a^{3} + 79 a^{2} + 85 a + 81\right)\cdot 89^{8} + \left(11 a^{3} + 25 a^{2} + 47 a + 87\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 3 }$ |
$=$ |
\( a^{3} + 28 a^{2} + 46 a + 49 + \left(48 a^{3} + 71 a^{2} + 76 a + 47\right)\cdot 89 + \left(23 a^{3} + 78 a^{2} + 58 a + 83\right)\cdot 89^{2} + \left(2 a^{3} + 70 a^{2} + 12\right)\cdot 89^{3} + \left(22 a^{3} + 41 a^{2} + 33 a + 13\right)\cdot 89^{4} + \left(31 a^{3} + 78 a^{2} + 62 a + 18\right)\cdot 89^{5} + \left(65 a^{3} + 86 a^{2} + 53 a + 61\right)\cdot 89^{6} + \left(63 a^{3} + 32 a^{2} + 5 a + 47\right)\cdot 89^{7} + \left(65 a^{3} + 36 a^{2} + 66 a + 71\right)\cdot 89^{8} + \left(15 a^{3} + 20 a^{2} + 76 a + 85\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 16 a^{3} + 56 a^{2} + 64 a + 46 + \left(15 a^{3} + 39 a^{2} + 29 a + 78\right)\cdot 89 + \left(28 a^{3} + 77 a^{2} + 7 a + 69\right)\cdot 89^{2} + \left(66 a^{3} + 49 a^{2} + 53 a + 15\right)\cdot 89^{3} + \left(31 a^{3} + 43 a^{2} + 21 a + 44\right)\cdot 89^{4} + \left(33 a^{3} + 88 a^{2} + 3 a + 10\right)\cdot 89^{5} + \left(63 a^{3} + 80 a^{2} + 56 a + 35\right)\cdot 89^{6} + \left(76 a^{3} + 25 a^{2} + 41 a + 17\right)\cdot 89^{7} + \left(85 a^{3} + 39 a^{2} + 85 a + 87\right)\cdot 89^{8} + \left(88 a^{3} + 82 a^{2} + 37 a + 35\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 62 a^{3} + 16 a^{2} + 14 a + 26 + \left(71 a^{3} + 38 a^{2} + 56 a + 14\right)\cdot 89 + \left(43 a^{3} + 27 a^{2} + 88 a + 7\right)\cdot 89^{2} + \left(83 a^{3} + 66 a^{2} + 81 a + 29\right)\cdot 89^{3} + \left(21 a^{3} + 68 a^{2} + 57 a + 62\right)\cdot 89^{4} + \left(5 a^{3} + 35 a^{2} + 45 a + 41\right)\cdot 89^{5} + \left(2 a^{3} + 16 a^{2} + 11 a + 62\right)\cdot 89^{6} + \left(54 a^{3} + 56 a^{2} + a + 14\right)\cdot 89^{7} + \left(42 a^{3} + 52 a^{2} + 7 a + 13\right)\cdot 89^{8} + \left(71 a^{3} + 61 a^{2} + 7 a + 63\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 88 a^{3} + 75 a^{2} + 33 a + 56 + \left(69 a^{3} + 80 a^{2} + 28 a + 5\right)\cdot 89 + \left(36 a^{3} + 54 a^{2} + 57 a + 45\right)\cdot 89^{2} + \left(20 a^{3} + 73 a^{2} + 42 a + 76\right)\cdot 89^{3} + \left(57 a^{3} + 13 a^{2} + 73 a + 25\right)\cdot 89^{4} + \left(30 a^{3} + 75 a^{2} + 11 a + 15\right)\cdot 89^{5} + \left(85 a^{3} + 25 a^{2} + 15 a + 43\right)\cdot 89^{6} + \left(18 a^{3} + 57 a^{2} + 78 a + 76\right)\cdot 89^{7} + \left(84 a^{3} + 85 a^{2} + 22 a + 1\right)\cdot 89^{8} + \left(15 a^{3} + 7 a^{2} + 3 a + 38\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 22 a^{3} + 70 a^{2} + 10 a + 21 + \left(38 a^{3} + 10 a^{2} + 81 a + 22\right)\cdot 89 + \left(85 a^{3} + 46 a^{2} + 81 a + 67\right)\cdot 89^{2} + \left(53 a^{3} + 36 a^{2} + 13 a + 65\right)\cdot 89^{3} + \left(46 a^{3} + 88 a^{2} + 62 a + 9\right)\cdot 89^{4} + \left(76 a^{3} + 2 a^{2} + 57 a + 87\right)\cdot 89^{5} + \left(40 a^{3} + 19 a^{2} + 87 a + 26\right)\cdot 89^{6} + \left(50 a^{3} + 41 a^{2} + 48 a + 59\right)\cdot 89^{7} + \left(12 a^{3} + 25 a^{2} + 70 a + 27\right)\cdot 89^{8} + \left(62 a^{3} + 72 a^{2} + 11 a + 25\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 84 a^{3} + 76 a^{2} + 75 a + 20 + \left(22 a^{3} + 27 a^{2} + 51 a + 29\right)\cdot 89 + \left(11 a^{2} + 34 a + 32\right)\cdot 89^{2} + \left(53 a^{3} + 9 a^{2} + 51 a + 16\right)\cdot 89^{3} + \left(23 a^{3} + 81 a^{2} + 73 a + 35\right)\cdot 89^{4} + \left(52 a^{3} + 45 a^{2} + 63 a + 56\right)\cdot 89^{5} + \left(38 a^{3} + 2 a^{2} + 39 a + 52\right)\cdot 89^{6} + \left(55 a^{3} + 87 a^{2} + 82 a + 58\right)\cdot 89^{7} + \left(73 a^{3} + 62 a^{2} + 72 a + 7\right)\cdot 89^{8} + \left(61 a^{3} + 61 a^{2} + 88 a + 42\right)\cdot 89^{9} +O(89^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 4 a^{3} + 64 a^{2} + 19 a + 16 + \left(20 a^{3} + 57 a^{2} + 53 a + 23\right)\cdot 89 + \left(25 a^{3} + 25 a^{2} + 37 a + 68\right)\cdot 89^{2} + \left(38 a^{3} + 4 a^{2} + 81 a + 44\right)\cdot 89^{3} + \left(87 a^{3} + 68 a^{2} + 24 a + 37\right)\cdot 89^{4} + \left(64 a^{3} + 60 a^{2} + 12 a + 24\right)\cdot 89^{5} + \left(69 a^{3} + 55 a^{2} + 25 a + 57\right)\cdot 89^{6} + \left(9 a^{3} + 47 a^{2} + 33 a + 11\right)\cdot 89^{7} + \left(57 a^{3} + 63 a^{2} + 34 a + 17\right)\cdot 89^{8} + \left(28 a^{3} + 23 a^{2} + 82 a + 77\right)\cdot 89^{9} +O(89^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(1,6)(3,4)(5,7)(8,9)$ | $0$ |
$36$ | $2$ | $(2,6)(3,5)(7,9)$ | $0$ |
$8$ | $3$ | $(1,5,9)(2,3,4)(6,8,7)$ | $-2$ |
$24$ | $3$ | $(1,3,7)(4,5,6)$ | $-2$ |
$48$ | $3$ | $(1,2,7)(3,6,5)(4,8,9)$ | $1$ |
$54$ | $4$ | $(1,3,6,4)(5,8,7,9)$ | $0$ |
$72$ | $6$ | $(1,7)(2,6,8,4,9,5)$ | $0$ |
$72$ | $6$ | $(1,3,2,8,6,5)(4,9,7)$ | $0$ |
$54$ | $8$ | $(1,4,6,2,3,9,8,5)$ | $0$ |
$54$ | $8$ | $(1,9,6,5,3,4,8,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.