Properties

Label 16.388...944.24t1334.a.a
Dimension $16$
Group $((C_3^2:Q_8):C_3):C_2$
Conductor $3.880\times 10^{25}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $16$
Group: $((C_3^2:Q_8):C_3):C_2$
Conductor: \(388\!\cdots\!944\)\(\medspace = 2^{48} \cdot 13^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.3.20245104295936.1
Galois orbit size: $1$
Smallest permutation container: 24T1334
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_3^2:\GL(2,3)$
Projective stem field: Galois closure of 9.3.20245104295936.1

Defining polynomial

$f(x)$$=$ \( x^{9} - x^{8} - 2x^{7} + 14x^{6} - 5x^{5} + x^{4} - 10x^{3} - 2x^{2} - 85x - 131 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: \( x^{4} + 4x^{2} + 72x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 49 + 59\cdot 89 + 57\cdot 89^{2} + 53\cdot 89^{4} + 45\cdot 89^{5} + 15\cdot 89^{6} + 20\cdot 89^{7} + 48\cdot 89^{8} + 78\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 79 a^{3} + 60 a^{2} + 6 a + 74 + \left(69 a^{3} + 29 a^{2} + 68 a + 75\right)\cdot 89 + \left(23 a^{3} + 34 a^{2} + 78 a + 13\right)\cdot 89^{2} + \left(38 a^{3} + 45 a^{2} + 30 a + 5\right)\cdot 89^{3} + \left(65 a^{3} + 39 a^{2} + 9 a + 75\right)\cdot 89^{4} + \left(61 a^{3} + 57 a^{2} + 10 a + 56\right)\cdot 89^{5} + \left(79 a^{3} + 68 a^{2} + 67 a + 1\right)\cdot 89^{6} + \left(26 a^{3} + 7 a^{2} + 64 a + 50\right)\cdot 89^{7} + \left(23 a^{3} + 79 a^{2} + 85 a + 81\right)\cdot 89^{8} + \left(11 a^{3} + 25 a^{2} + 47 a + 87\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( a^{3} + 28 a^{2} + 46 a + 49 + \left(48 a^{3} + 71 a^{2} + 76 a + 47\right)\cdot 89 + \left(23 a^{3} + 78 a^{2} + 58 a + 83\right)\cdot 89^{2} + \left(2 a^{3} + 70 a^{2} + 12\right)\cdot 89^{3} + \left(22 a^{3} + 41 a^{2} + 33 a + 13\right)\cdot 89^{4} + \left(31 a^{3} + 78 a^{2} + 62 a + 18\right)\cdot 89^{5} + \left(65 a^{3} + 86 a^{2} + 53 a + 61\right)\cdot 89^{6} + \left(63 a^{3} + 32 a^{2} + 5 a + 47\right)\cdot 89^{7} + \left(65 a^{3} + 36 a^{2} + 66 a + 71\right)\cdot 89^{8} + \left(15 a^{3} + 20 a^{2} + 76 a + 85\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a^{3} + 56 a^{2} + 64 a + 46 + \left(15 a^{3} + 39 a^{2} + 29 a + 78\right)\cdot 89 + \left(28 a^{3} + 77 a^{2} + 7 a + 69\right)\cdot 89^{2} + \left(66 a^{3} + 49 a^{2} + 53 a + 15\right)\cdot 89^{3} + \left(31 a^{3} + 43 a^{2} + 21 a + 44\right)\cdot 89^{4} + \left(33 a^{3} + 88 a^{2} + 3 a + 10\right)\cdot 89^{5} + \left(63 a^{3} + 80 a^{2} + 56 a + 35\right)\cdot 89^{6} + \left(76 a^{3} + 25 a^{2} + 41 a + 17\right)\cdot 89^{7} + \left(85 a^{3} + 39 a^{2} + 85 a + 87\right)\cdot 89^{8} + \left(88 a^{3} + 82 a^{2} + 37 a + 35\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 62 a^{3} + 16 a^{2} + 14 a + 26 + \left(71 a^{3} + 38 a^{2} + 56 a + 14\right)\cdot 89 + \left(43 a^{3} + 27 a^{2} + 88 a + 7\right)\cdot 89^{2} + \left(83 a^{3} + 66 a^{2} + 81 a + 29\right)\cdot 89^{3} + \left(21 a^{3} + 68 a^{2} + 57 a + 62\right)\cdot 89^{4} + \left(5 a^{3} + 35 a^{2} + 45 a + 41\right)\cdot 89^{5} + \left(2 a^{3} + 16 a^{2} + 11 a + 62\right)\cdot 89^{6} + \left(54 a^{3} + 56 a^{2} + a + 14\right)\cdot 89^{7} + \left(42 a^{3} + 52 a^{2} + 7 a + 13\right)\cdot 89^{8} + \left(71 a^{3} + 61 a^{2} + 7 a + 63\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 88 a^{3} + 75 a^{2} + 33 a + 56 + \left(69 a^{3} + 80 a^{2} + 28 a + 5\right)\cdot 89 + \left(36 a^{3} + 54 a^{2} + 57 a + 45\right)\cdot 89^{2} + \left(20 a^{3} + 73 a^{2} + 42 a + 76\right)\cdot 89^{3} + \left(57 a^{3} + 13 a^{2} + 73 a + 25\right)\cdot 89^{4} + \left(30 a^{3} + 75 a^{2} + 11 a + 15\right)\cdot 89^{5} + \left(85 a^{3} + 25 a^{2} + 15 a + 43\right)\cdot 89^{6} + \left(18 a^{3} + 57 a^{2} + 78 a + 76\right)\cdot 89^{7} + \left(84 a^{3} + 85 a^{2} + 22 a + 1\right)\cdot 89^{8} + \left(15 a^{3} + 7 a^{2} + 3 a + 38\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 22 a^{3} + 70 a^{2} + 10 a + 21 + \left(38 a^{3} + 10 a^{2} + 81 a + 22\right)\cdot 89 + \left(85 a^{3} + 46 a^{2} + 81 a + 67\right)\cdot 89^{2} + \left(53 a^{3} + 36 a^{2} + 13 a + 65\right)\cdot 89^{3} + \left(46 a^{3} + 88 a^{2} + 62 a + 9\right)\cdot 89^{4} + \left(76 a^{3} + 2 a^{2} + 57 a + 87\right)\cdot 89^{5} + \left(40 a^{3} + 19 a^{2} + 87 a + 26\right)\cdot 89^{6} + \left(50 a^{3} + 41 a^{2} + 48 a + 59\right)\cdot 89^{7} + \left(12 a^{3} + 25 a^{2} + 70 a + 27\right)\cdot 89^{8} + \left(62 a^{3} + 72 a^{2} + 11 a + 25\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 84 a^{3} + 76 a^{2} + 75 a + 20 + \left(22 a^{3} + 27 a^{2} + 51 a + 29\right)\cdot 89 + \left(11 a^{2} + 34 a + 32\right)\cdot 89^{2} + \left(53 a^{3} + 9 a^{2} + 51 a + 16\right)\cdot 89^{3} + \left(23 a^{3} + 81 a^{2} + 73 a + 35\right)\cdot 89^{4} + \left(52 a^{3} + 45 a^{2} + 63 a + 56\right)\cdot 89^{5} + \left(38 a^{3} + 2 a^{2} + 39 a + 52\right)\cdot 89^{6} + \left(55 a^{3} + 87 a^{2} + 82 a + 58\right)\cdot 89^{7} + \left(73 a^{3} + 62 a^{2} + 72 a + 7\right)\cdot 89^{8} + \left(61 a^{3} + 61 a^{2} + 88 a + 42\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 4 a^{3} + 64 a^{2} + 19 a + 16 + \left(20 a^{3} + 57 a^{2} + 53 a + 23\right)\cdot 89 + \left(25 a^{3} + 25 a^{2} + 37 a + 68\right)\cdot 89^{2} + \left(38 a^{3} + 4 a^{2} + 81 a + 44\right)\cdot 89^{3} + \left(87 a^{3} + 68 a^{2} + 24 a + 37\right)\cdot 89^{4} + \left(64 a^{3} + 60 a^{2} + 12 a + 24\right)\cdot 89^{5} + \left(69 a^{3} + 55 a^{2} + 25 a + 57\right)\cdot 89^{6} + \left(9 a^{3} + 47 a^{2} + 33 a + 11\right)\cdot 89^{7} + \left(57 a^{3} + 63 a^{2} + 34 a + 17\right)\cdot 89^{8} + \left(28 a^{3} + 23 a^{2} + 82 a + 77\right)\cdot 89^{9} +O(89^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,9)(2,3,4)(6,8,7)$
$(1,5,3,2)(4,6,9,8)$
$(1,2,7,6,5,8,4,3)$
$(1,5,9)(2,4,3)$
$(1,8,4)(3,6,9)$
$(1,4,8)(2,7,5)(3,6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$16$
$9$$2$$(1,6)(3,4)(5,7)(8,9)$$0$
$36$$2$$(2,6)(3,5)(7,9)$$0$
$8$$3$$(1,5,9)(2,3,4)(6,8,7)$$-2$
$24$$3$$(1,3,7)(4,5,6)$$-2$
$48$$3$$(1,2,7)(3,6,5)(4,8,9)$$1$
$54$$4$$(1,3,6,4)(5,8,7,9)$$0$
$72$$6$$(1,7)(2,6,8,4,9,5)$$0$
$72$$6$$(1,3,2,8,6,5)(4,9,7)$$0$
$54$$8$$(1,4,6,2,3,9,8,5)$$0$
$54$$8$$(1,9,6,5,3,4,8,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.