Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 19 + \left(11 a + 4\right)\cdot 23 + \left(22 a + 7\right)\cdot 23^{2} + \left(11 a + 14\right)\cdot 23^{3} + \left(6 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 18 + \left(15 a + 3\right)\cdot 23 + \left(22 a + 15\right)\cdot 23^{2} + \left(16 a + 2\right)\cdot 23^{3} + \left(2 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 17\cdot 23 + 19\cdot 23^{2} + 21\cdot 23^{3} + 2\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 + 19\cdot 23 + 9\cdot 23^{2} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a + 1 + \left(11 a + 14\right)\cdot 23 + 17\cdot 23^{2} + \left(11 a + 15\right)\cdot 23^{3} + \left(16 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 a + 20 + \left(7 a + 9\right)\cdot 23 + 22\cdot 23^{2} + \left(6 a + 13\right)\cdot 23^{3} + \left(20 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $16$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $15$ | $2$ | $(1,2)$ | $0$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)$ | $-2$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.