Properties

Label 16.2e42_3e32.36t1252.3
Dimension 16
Group $S_6$
Conductor $ 2^{42} \cdot 3^{32}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$8149668976585114505617342464= 2^{42} \cdot 3^{32} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 4 x^{3} + 6 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 167 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 167 }$: $ x^{2} + 166 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 89 a + 50 + \left(63 a + 149\right)\cdot 167 + \left(34 a + 77\right)\cdot 167^{2} + \left(a + 66\right)\cdot 167^{3} + \left(3 a + 6\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 107 a + 68 + \left(105 a + 149\right)\cdot 167 + \left(19 a + 125\right)\cdot 167^{2} + \left(68 a + 63\right)\cdot 167^{3} + \left(78 a + 129\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 a + 8 + \left(61 a + 148\right)\cdot 167 + \left(147 a + 39\right)\cdot 167^{2} + \left(98 a + 112\right)\cdot 167^{3} + \left(88 a + 139\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 101 + 73\cdot 167 + 118\cdot 167^{2} + 26\cdot 167^{3} + 43\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 135 + 23\cdot 167 + 90\cdot 167^{2} + 31\cdot 167^{3} + 7\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 78 a + 139 + \left(103 a + 123\right)\cdot 167 + \left(132 a + 48\right)\cdot 167^{2} + \left(165 a + 33\right)\cdot 167^{3} + \left(163 a + 8\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.