Properties

Label 16.2e34_3e36.36t1252.1
Dimension 16
Group $S_6$
Conductor $ 2^{34} \cdot 3^{36}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$2578606199622633886542987264= 2^{34} \cdot 3^{36} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 4 x^{3} + 18 x^{2} + 12 x - 26 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 + 3\cdot 67 + 26\cdot 67^{2} + 39\cdot 67^{3} + 47\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 44\cdot 67 + 8\cdot 67^{2} + 28\cdot 67^{3} + 20\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 62 + \left(55 a + 41\right)\cdot 67 + \left(48 a + 66\right)\cdot 67^{2} + \left(13 a + 23\right)\cdot 67^{3} + \left(42 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 a + 3 + \left(11 a + 59\right)\cdot 67 + \left(18 a + 5\right)\cdot 67^{2} + \left(53 a + 30\right)\cdot 67^{3} + \left(24 a + 57\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 53\cdot 67 + 33\cdot 67^{2} + 27\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 66\cdot 67 + 59\cdot 67^{2} + 51\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.