Properties

Label 16.29e8_2153e8.36t1252.1
Dimension 16
Group $S_6$
Conductor $ 29^{8} \cdot 2153^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$230959707989689918440198968195571767521= 29^{8} \cdot 2153^{8} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} + 2 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 36 + 34\cdot 113^{2} + 19\cdot 113^{3} + 11\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 75 + 23\cdot 113 + 75\cdot 113^{2} + 103\cdot 113^{3} + 55\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 a + 95 + \left(85 a + 30\right)\cdot 113 + \left(80 a + 5\right)\cdot 113^{2} + \left(72 a + 3\right)\cdot 113^{3} + \left(17 a + 29\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 15 + \left(52 a + 73\right)\cdot 113 + \left(98 a + 63\right)\cdot 113^{2} + \left(4 a + 11\right)\cdot 113^{3} + \left(112 a + 102\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 a + 84 + \left(27 a + 88\right)\cdot 113 + \left(32 a + 97\right)\cdot 113^{2} + \left(40 a + 3\right)\cdot 113^{3} + \left(95 a + 55\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 102 a + 34 + \left(60 a + 9\right)\cdot 113 + \left(14 a + 63\right)\cdot 113^{2} + \left(108 a + 84\right)\cdot 113^{3} + 85\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.