Properties

Label 16.255179e8.36t1252.1
Dimension 16
Group $S_6$
Conductor $ 255179^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$17978748177660562682846233606086500941073761= 255179^{8} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 3 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 6 + \left(6 a + 34\right)\cdot 97 + \left(86 a + 36\right)\cdot 97^{2} + \left(11 a + 48\right)\cdot 97^{3} + \left(21 a + 56\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 65 a + 64 + \left(20 a + 78\right)\cdot 97 + \left(46 a + 64\right)\cdot 97^{2} + \left(79 a + 16\right)\cdot 97^{3} + \left(70 a + 49\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 8 + \left(9 a + 83\right)\cdot 97 + \left(49 a + 68\right)\cdot 97^{2} + \left(14 a + 69\right)\cdot 97^{3} + \left(93 a + 48\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 a + 8 + \left(90 a + 38\right)\cdot 97 + \left(10 a + 19\right)\cdot 97^{2} + \left(85 a + 71\right)\cdot 97^{3} + \left(75 a + 65\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 32 + \left(76 a + 34\right)\cdot 97 + \left(50 a + 90\right)\cdot 97^{2} + \left(17 a + 49\right)\cdot 97^{3} + \left(26 a + 40\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 78 + \left(87 a + 22\right)\cdot 97 + \left(47 a + 11\right)\cdot 97^{2} + \left(82 a + 35\right)\cdot 97^{3} + \left(3 a + 30\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $16$
$15$ $2$ $(1,2)(3,4)(5,6)$ $0$
$15$ $2$ $(1,2)$ $0$
$45$ $2$ $(1,2)(3,4)$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-2$
$40$ $3$ $(1,2,3)$ $-2$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.