Basic invariants
Dimension: | $16$ |
Group: | $((C_3^2:Q_8):C_3):C_2$ |
Conductor: | \(206\!\cdots\!456\)\(\medspace = 2^{10} \cdot 3^{14} \cdot 29^{10} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.83256230593728.2 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T1334 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_3^2:\GL(2,3)$ |
Projective stem field: | Galois closure of 9.3.83256230593728.2 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - x^{8} - 13x^{7} + 2x^{6} + 38x^{5} + 17x^{4} + 47x^{3} + 71x^{2} - 4x + 31 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{4} + 3x^{2} + 12x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( a^{3} + 9 a^{2} + 10 a + 11 + \left(9 a^{3} + 10 a^{2} + 12 a\right)\cdot 13 + \left(2 a^{3} + 7 a^{2} + 5 a + 8\right)\cdot 13^{2} + \left(11 a^{3} + 4 a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(2 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 13^{4} + \left(3 a^{3} + 9 a^{2} + 7 a + 1\right)\cdot 13^{5} + \left(12 a^{3} + 11 a^{2} + 7 a + 8\right)\cdot 13^{6} + \left(2 a^{3} + 10 a^{2} + 3 a + 5\right)\cdot 13^{7} + \left(4 a^{3} + 4 a^{2} + 2 a + 6\right)\cdot 13^{8} + \left(10 a^{3} + 5 a^{2} + 3 a\right)\cdot 13^{9} +O(13^{10})\)
$r_{ 2 }$ |
$=$ |
\( 3 + 8\cdot 13 + 11\cdot 13^{2} + 12\cdot 13^{3} + 8\cdot 13^{5} + 2\cdot 13^{6} + 4\cdot 13^{7} + 4\cdot 13^{9} +O(13^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 7 a^{3} + 6 a^{2} + 10 a + 2 + \left(9 a^{3} + 3 a^{2} + 7\right)\cdot 13 + \left(12 a^{3} + 3 a^{2} + 2 a\right)\cdot 13^{2} + \left(4 a^{3} + 12 a^{2} + 8 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 8 a + 2\right)\cdot 13^{4} + \left(11 a^{3} + 10 a^{2} + 10 a + 1\right)\cdot 13^{5} + \left(6 a^{3} + 3 a^{2} + 4 a + 6\right)\cdot 13^{6} + \left(11 a^{3} + 6 a^{2} + 12 a + 4\right)\cdot 13^{7} + \left(3 a^{3} + a^{2} + 11 a + 11\right)\cdot 13^{8} + \left(3 a^{3} + 3 a^{2} + 4 a + 11\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 4 }$ |
$=$ |
\( a^{3} + 5 a^{2} + 7 a + 8 + \left(5 a^{3} + 11 a^{2} + 3 a + 1\right)\cdot 13 + \left(11 a^{3} + 12 a^{2} + 9 a + 7\right)\cdot 13^{2} + \left(11 a^{3} + 12 a^{2} + 5\right)\cdot 13^{3} + \left(2 a^{3} + 11 a^{2} + 6 a + 7\right)\cdot 13^{4} + \left(9 a^{3} + 4 a^{2} + 8 a + 3\right)\cdot 13^{5} + \left(4 a^{3} + 8 a^{2} + 5 a + 8\right)\cdot 13^{6} + \left(11 a^{3} + 12 a^{2} + 10 a + 4\right)\cdot 13^{7} + \left(11 a^{3} + a^{2} + 8 a + 2\right)\cdot 13^{8} + \left(10 a^{3} + 3 a^{2} + 8 a + 4\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 7 a^{3} + 3 a + 6 + \left(10 a^{3} + 9 a^{2} + 11 a + 11\right)\cdot 13 + \left(12 a^{3} + 8 a^{2} + 9 a + 2\right)\cdot 13^{2} + \left(7 a^{3} + 8 a^{2} + 4 a + 4\right)\cdot 13^{3} + \left(10 a^{3} + 8 a^{2} + 3 a + 5\right)\cdot 13^{4} + \left(12 a^{3} + 6 a^{2} + 6 a + 5\right)\cdot 13^{5} + \left(7 a^{3} + 7 a^{2} + 4 a + 2\right)\cdot 13^{6} + \left(6 a^{3} + 11 a^{2} + 7\right)\cdot 13^{7} + \left(3 a^{3} + a^{2} + 12 a + 8\right)\cdot 13^{8} + \left(5 a^{3} + 9 a^{2} + 7 a + 12\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 8 a^{3} + 8 a^{2} + 5 a + 4 + \left(8 a^{3} + a + 4\right)\cdot 13 + \left(12 a^{3} + 4 a^{2} + 11 a + 5\right)\cdot 13^{2} + \left(2 a^{3} + a^{2} + a + 5\right)\cdot 13^{3} + \left(11 a^{2} + 5 a + 1\right)\cdot 13^{4} + \left(2 a^{3} + 7 a^{2} + 3 a + 8\right)\cdot 13^{5} + \left(11 a^{3} + 5 a^{2} + 6 a + 3\right)\cdot 13^{6} + \left(8 a^{2} + 1\right)\cdot 13^{7} + \left(3 a^{3} + 3 a^{2} + 3 a + 10\right)\cdot 13^{8} + \left(9 a^{3} + 5 a^{2} + 5 a + 11\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 11 a^{3} + 11 a^{2} + 3 a + \left(9 a^{3} + 2 a^{2} + a + 9\right)\cdot 13 + \left(10 a^{3} + 6 a^{2} + 8 a + 6\right)\cdot 13^{2} + \left(a^{3} + 5 a + 1\right)\cdot 13^{3} + \left(12 a^{3} + 4 a^{2} + 4 a + 12\right)\cdot 13^{4} + \left(11 a^{3} + 12 a^{2} + a + 5\right)\cdot 13^{5} + \left(11 a^{3} + 2 a^{2} + 9 a + 11\right)\cdot 13^{6} + \left(4 a^{3} + 10 a^{2} + 9 a + 2\right)\cdot 13^{7} + \left(a^{3} + 4 a^{2} + 12 a\right)\cdot 13^{8} + \left(7 a^{3} + 8 a^{2} + 9 a + 2\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 8 }$ |
$=$ |
\( a^{3} + 4 a^{2} + 11 a + \left(3 a^{2} + 10 a + 3\right)\cdot 13 + \left(4 a^{3} + 3 a^{2} + 4\right)\cdot 13^{2} + \left(4 a^{3} + 6 a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(6 a^{3} + 3 a^{2} + 7 a + 12\right)\cdot 13^{4} + \left(11 a^{3} + 10 a^{2} + a + 5\right)\cdot 13^{5} + \left(10 a^{3} + 7 a^{2} + 10 a + 4\right)\cdot 13^{6} + \left(2 a^{3} + 12 a^{2} + 7 a + 12\right)\cdot 13^{7} + \left(12 a^{3} + 9 a^{2} + a + 10\right)\cdot 13^{8} + \left(2 a^{2} + 9 a + 4\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 3 a^{3} + 9 a^{2} + 3 a + 6 + \left(12 a^{3} + 10 a^{2} + 10 a + 6\right)\cdot 13 + \left(10 a^{3} + 5 a^{2} + 4 a + 5\right)\cdot 13^{2} + \left(6 a^{3} + 5 a^{2} + 3 a + 7\right)\cdot 13^{3} + \left(3 a^{3} + 12 a^{2} + 7 a\right)\cdot 13^{4} + \left(3 a^{3} + 2 a^{2} + 12 a + 12\right)\cdot 13^{5} + \left(12 a^{3} + 4 a^{2} + 3 a + 4\right)\cdot 13^{6} + \left(10 a^{3} + 5 a^{2} + 7 a + 9\right)\cdot 13^{7} + \left(11 a^{3} + 10 a^{2} + 12 a + 1\right)\cdot 13^{8} + \left(4 a^{3} + a^{2} + 2 a\right)\cdot 13^{9} +O(13^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(1,6)(2,4)(3,5)(7,8)$ | $0$ |
$36$ | $2$ | $(2,3)(5,6)(8,9)$ | $0$ |
$8$ | $3$ | $(1,2,3)(4,6,5)(7,8,9)$ | $-2$ |
$24$ | $3$ | $(1,7,4)(3,5,9)$ | $-2$ |
$48$ | $3$ | $(1,6,8)(2,5,9)(3,4,7)$ | $1$ |
$54$ | $4$ | $(1,4,6,2)(3,7,5,8)$ | $0$ |
$72$ | $6$ | $(1,7,4)(2,9,6,3,8,5)$ | $0$ |
$72$ | $6$ | $(1,8,7,2,4,6)(5,9)$ | $0$ |
$54$ | $8$ | $(1,3,4,7,6,5,2,8)$ | $0$ |
$54$ | $8$ | $(1,5,4,8,6,3,2,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.