Properties

Label 16.199e8_12539e8.36t1252.1c1
Dimension 16
Group $S_6$
Conductor $ 199^{8} \cdot 12539^{8}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$1502892199467275608741132080278906173617999846110881= 199^{8} \cdot 12539^{8} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 6 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 151 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 151 }$: $ x^{2} + 149 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 35 + 63\cdot 151 + 55\cdot 151^{2} + 17\cdot 151^{3} + 5\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 52 + 55\cdot 151 + 108\cdot 151^{2} + 97\cdot 151^{3} + 125\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 145 a + 111 + \left(30 a + 49\right)\cdot 151 + \left(124 a + 68\right)\cdot 151^{2} + \left(112 a + 51\right)\cdot 151^{3} + \left(19 a + 130\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 122 a + 32 + \left(39 a + 29\right)\cdot 151 + \left(36 a + 102\right)\cdot 151^{2} + \left(122 a + 113\right)\cdot 151^{3} + \left(14 a + 113\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 99 + \left(120 a + 117\right)\cdot 151 + \left(26 a + 134\right)\cdot 151^{2} + \left(38 a + 1\right)\cdot 151^{3} + \left(131 a + 57\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 125 + \left(111 a + 137\right)\cdot 151 + \left(114 a + 134\right)\cdot 151^{2} + \left(28 a + 19\right)\cdot 151^{3} + \left(136 a + 21\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$16$
$15$$2$$(1,2)(3,4)(5,6)$$0$
$15$$2$$(1,2)$$0$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-2$
$40$$3$$(1,2,3)$$-2$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.