Basic invariants
Dimension: | $16$ |
Group: | $((C_3^2:Q_8):C_3):C_2$ |
Conductor: | \(158\!\cdots\!000\)\(\medspace = 2^{26} \cdot 3^{18} \cdot 5^{14} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.1259712000000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T1334 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_3^2:\GL(2,3)$ |
Projective stem field: | Galois closure of 9.3.1259712000000.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 6x^{7} - 18x^{6} + 12x^{5} + 72x^{4} + 90x^{3} - 72x^{2} - 126x - 36 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$:
\( x^{4} + 6x^{2} + 24x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 14 + 28\cdot 37 + 12\cdot 37^{2} + 20\cdot 37^{3} + 33\cdot 37^{4} + 3\cdot 37^{5} + 10\cdot 37^{6} + 21\cdot 37^{7} + 27\cdot 37^{8} + 28\cdot 37^{9} +O(37^{10})\)
$r_{ 2 }$ |
$=$ |
\( 26 a^{3} + 29 a^{2} + 31 a + 11 + \left(30 a^{3} + 16 a^{2} + 31 a + 23\right)\cdot 37 + \left(25 a^{3} + 36 a^{2} + 25 a + 23\right)\cdot 37^{2} + \left(21 a^{3} + 28 a^{2} + 11 a + 3\right)\cdot 37^{3} + \left(28 a^{3} + 29 a^{2} + 5 a + 5\right)\cdot 37^{4} + \left(27 a^{3} + 13 a^{2} + 6 a + 11\right)\cdot 37^{5} + \left(17 a^{3} + 20 a^{2} + 2 a + 29\right)\cdot 37^{6} + \left(31 a^{3} + 12 a^{2} + 20 a + 23\right)\cdot 37^{7} + \left(32 a^{3} + 4 a^{2} + 17 a + 23\right)\cdot 37^{8} + \left(19 a^{3} + 30 a^{2} + 31 a + 11\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 31 a^{3} + 5 a^{2} + 14 a + 22 + \left(9 a^{2} + 33 a + 4\right)\cdot 37 + \left(14 a^{3} + 28 a^{2} + 20 a + 15\right)\cdot 37^{2} + \left(3 a^{3} + 20 a^{2} + 14 a + 18\right)\cdot 37^{3} + \left(35 a^{3} + 23 a^{2} + 5 a + 25\right)\cdot 37^{4} + \left(33 a^{3} + 29 a^{2} + 12 a + 26\right)\cdot 37^{5} + \left(3 a^{3} + 27 a^{2} + 26 a + 21\right)\cdot 37^{6} + \left(17 a^{2} + 33 a + 10\right)\cdot 37^{7} + \left(14 a^{3} + 12 a^{2} + 25 a + 12\right)\cdot 37^{8} + \left(13 a^{3} + 28 a^{2} + 30 a + 15\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 33 a^{3} + 29 a^{2} + 16 a + 19 + \left(3 a^{3} + 13 a^{2} + 36 a + 36\right)\cdot 37 + \left(23 a^{3} + 10 a^{2} + 9 a + 13\right)\cdot 37^{2} + \left(2 a^{3} + 21 a^{2} + 18 a + 6\right)\cdot 37^{3} + \left(32 a^{3} + 6 a^{2} + a + 31\right)\cdot 37^{4} + \left(34 a^{3} + 8 a^{2} + 18 a + 15\right)\cdot 37^{5} + \left(20 a^{3} + 14 a^{2} + 30 a + 28\right)\cdot 37^{6} + \left(13 a^{3} + 24 a^{2} + 35 a + 13\right)\cdot 37^{7} + \left(21 a^{3} + 17 a^{2} + 16 a + 12\right)\cdot 37^{8} + \left(6 a^{3} + 3 a^{2} + 19 a + 3\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 14 a^{3} + 2 a^{2} + 28 a + 10 + \left(15 a^{3} + 8 a^{2} + 17\right)\cdot 37 + \left(24 a^{3} + 21 a^{2} + 28 a + 26\right)\cdot 37^{2} + \left(22 a^{3} + 5 a^{2} + 26 a + 24\right)\cdot 37^{3} + \left(15 a^{3} + 4 a^{2} + 34 a + 27\right)\cdot 37^{4} + \left(13 a^{3} + 20 a + 7\right)\cdot 37^{5} + \left(27 a^{3} + 33 a^{2} + 32 a + 18\right)\cdot 37^{6} + \left(23 a^{3} + 32 a^{2} + 31 a + 19\right)\cdot 37^{7} + \left(16 a^{3} + 9 a^{2} + 16 a + 7\right)\cdot 37^{8} + \left(12 a^{3} + 9 a^{2} + 20 a\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 25 a^{3} + 35 a^{2} + 25 a + 11 + \left(16 a^{3} + 4 a^{2} + 23 a + 31\right)\cdot 37 + \left(15 a^{3} + 12 a^{2} + 17 a + 22\right)\cdot 37^{2} + \left(29 a^{3} + 31 a^{2} + 29 a + 1\right)\cdot 37^{3} + \left(6 a^{3} + 19 a^{2} + 8 a + 27\right)\cdot 37^{4} + \left(20 a^{3} + 27 a^{2} + 27 a + 26\right)\cdot 37^{5} + \left(36 a^{3} + 20 a^{2} + 27 a + 35\right)\cdot 37^{6} + \left(32 a^{3} + 31 a^{2} + 2 a + 33\right)\cdot 37^{7} + \left(19 a^{3} + 2 a^{2} + 16 a + 7\right)\cdot 37^{8} + \left(34 a^{3} + 14 a^{2} + 20 a + 5\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 32 a^{3} + 24 a^{2} + 16 a + 23 + \left(24 a^{3} + 29 a^{2} + 21 a + 17\right)\cdot 37 + \left(27 a^{3} + 3 a^{2} + 21 a + 2\right)\cdot 37^{2} + \left(26 a^{3} + 31 a^{2} + 35 a + 26\right)\cdot 37^{3} + \left(29 a^{3} + a^{2} + 7 a + 11\right)\cdot 37^{4} + \left(6 a^{3} + 19 a^{2} + 8 a + 24\right)\cdot 37^{5} + \left(18 a^{3} + 6 a + 11\right)\cdot 37^{6} + \left(13 a^{3} + 5 a^{2} + 15 a + 28\right)\cdot 37^{7} + \left(24 a^{3} + 21 a^{2} + 28 a + 2\right)\cdot 37^{8} + \left(2 a^{3} + 8 a^{2} + 10 a + 22\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 15 a^{3} + 16 a^{2} + 28 a + 26 + \left(7 a^{3} + 21 a^{2} + 19 a + 11\right)\cdot 37 + \left(9 a^{3} + 31 a^{2} + 21 a + 12\right)\cdot 37^{2} + \left(4 a^{3} + 5 a + 11\right)\cdot 37^{3} + \left(14 a^{3} + 5 a^{2} + 22 a + 36\right)\cdot 37^{4} + \left(35 a^{3} + 17 a^{2} + 35 a + 14\right)\cdot 37^{5} + \left(30 a^{3} + 31 a^{2} + 10 a + 1\right)\cdot 37^{6} + \left(9 a^{3} + 26 a^{2} + 26 a + 28\right)\cdot 37^{7} + \left(14 a^{3} + 22 a^{2} + 2 a + 10\right)\cdot 37^{8} + \left(14 a^{3} + 33 a^{2} + 13 a + 12\right)\cdot 37^{9} +O(37^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 9 a^{3} + 8 a^{2} + 27 a + 12 + \left(11 a^{3} + 7 a^{2} + 17 a + 14\right)\cdot 37 + \left(8 a^{3} + 4 a^{2} + 2 a + 18\right)\cdot 37^{2} + \left(8 a^{2} + 6 a + 35\right)\cdot 37^{3} + \left(23 a^{3} + 20 a^{2} + 25 a + 23\right)\cdot 37^{4} + \left(12 a^{3} + 32 a^{2} + 19 a + 16\right)\cdot 37^{5} + \left(29 a^{3} + 36 a^{2} + 11 a + 28\right)\cdot 37^{6} + \left(22 a^{3} + 33 a^{2} + 19 a + 5\right)\cdot 37^{7} + \left(4 a^{3} + 19 a^{2} + 23 a + 6\right)\cdot 37^{8} + \left(7 a^{3} + 20 a^{2} + a + 12\right)\cdot 37^{9} +O(37^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(1,3)(2,8)(4,5)(6,9)$ | $0$ |
$36$ | $2$ | $(3,4)(5,9)(7,8)$ | $0$ |
$8$ | $3$ | $(1,9,5)(2,8,7)(3,4,6)$ | $-2$ |
$24$ | $3$ | $(1,6,2)(4,5,7)$ | $-2$ |
$48$ | $3$ | $(1,3,4)(2,9,5)(6,8,7)$ | $1$ |
$54$ | $4$ | $(1,9,3,6)(2,5,8,4)$ | $0$ |
$72$ | $6$ | $(1,6,2)(3,7,9,4,8,5)$ | $0$ |
$72$ | $6$ | $(1,6,7,8,3,5)(2,9)$ | $0$ |
$54$ | $8$ | $(1,8,9,4,3,2,6,5)$ | $0$ |
$54$ | $8$ | $(1,2,9,5,3,8,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.