Basic invariants
Dimension: | $16$ |
Group: | $S_3\wr S_3$ |
Conductor: | \(152\!\cdots\!561\)\(\medspace = 3^{16} \cdot 29^{12} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.1.134573648589.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T2912 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $S_3\wr S_3$ |
Projective stem field: | Galois closure of 9.1.134573648589.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} + 9x^{7} - 5x^{6} + 27x^{5} - 30x^{4} + 31x^{3} - 45x^{2} + 12x + 9 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$:
\( x^{3} + 6x + 65 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 48 a^{2} + 33 a + 61 + \left(59 a^{2} + 50 a + 13\right)\cdot 67 + \left(a^{2} + 35 a + 3\right)\cdot 67^{2} + \left(20 a^{2} + 14 a + 6\right)\cdot 67^{3} + \left(40 a^{2} + 43 a + 26\right)\cdot 67^{4} + \left(28 a^{2} + 45 a + 26\right)\cdot 67^{5} + \left(23 a^{2} + 30 a + 15\right)\cdot 67^{6} + \left(58 a^{2} + 42 a + 26\right)\cdot 67^{7} + \left(3 a^{2} + 64 a + 65\right)\cdot 67^{8} + \left(14 a^{2} + 40 a + 20\right)\cdot 67^{9} +O(67^{10})\)
$r_{ 2 }$ |
$=$ |
\( 19 a^{2} + 52 a + 12 + \left(45 a^{2} + 46 a + 23\right)\cdot 67 + \left(34 a^{2} + 29 a\right)\cdot 67^{2} + \left(32 a^{2} + 6 a + 56\right)\cdot 67^{3} + \left(44 a^{2} + 51 a + 42\right)\cdot 67^{4} + \left(43 a^{2} + 61 a + 19\right)\cdot 67^{5} + \left(60 a^{2} + 49 a + 30\right)\cdot 67^{6} + \left(51 a^{2} + 22 a\right)\cdot 67^{7} + \left(a^{2} + 2 a + 57\right)\cdot 67^{8} + \left(62 a^{2} + 37 a + 11\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 45 a^{2} + 14 a + 53 + \left(25 a^{2} + 51 a + 66\right)\cdot 67 + \left(64 a^{2} + 42 a + 48\right)\cdot 67^{2} + \left(64 a^{2} + 53 a + 20\right)\cdot 67^{3} + \left(19 a^{2} + 25 a + 56\right)\cdot 67^{4} + \left(46 a^{2} + 8 a + 65\right)\cdot 67^{5} + \left(52 a^{2} + 57 a + 16\right)\cdot 67^{6} + \left(55 a^{2} + 52 a + 48\right)\cdot 67^{7} + \left(60 a^{2} + 47 a\right)\cdot 67^{8} + \left(66 a^{2} + 17 a + 23\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 53 a^{2} + 28 a + 1 + \left(31 a^{2} + 3 a + 53\right)\cdot 67 + \left(64 a^{2} + 3 a + 1\right)\cdot 67^{2} + \left(33 a^{2} + 58 a + 47\right)\cdot 67^{3} + \left(26 a^{2} + 21 a + 63\right)\cdot 67^{4} + \left(a^{2} + 15 a + 11\right)\cdot 67^{5} + \left(20 a^{2} + 51 a + 17\right)\cdot 67^{6} + \left(51 a^{2} + 35 a + 51\right)\cdot 67^{7} + \left(50 a^{2} + 59 a + 60\right)\cdot 67^{8} + \left(65 a^{2} + 30 a + 6\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 56 a^{2} + 47 a + 30 + \left(65 a^{2} + 2 a + 26\right)\cdot 67 + \left(a^{2} + 63 a\right)\cdot 67^{2} + \left(56 a^{2} + 18 a + 52\right)\cdot 67^{3} + \left(46 a^{2} + 39 a + 29\right)\cdot 67^{4} + \left(50 a^{2} + 52 a + 16\right)\cdot 67^{5} + \left(57 a^{2} + 24 a + 37\right)\cdot 67^{6} + \left(53 a^{2} + 25 a + 40\right)\cdot 67^{7} + \left(60 a^{2} + 9 a\right)\cdot 67^{8} + \left(12 a^{2} + 54 a + 8\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 11 a^{2} + 38 a + 34 + \left(39 a^{2} + 27 a + 15\right)\cdot 67 + \left(34 a^{2} + 2 a + 16\right)\cdot 67^{2} + \left(63 a^{2} + 2 a + 31\right)\cdot 67^{3} + \left(37 a^{2} + 55 a + 42\right)\cdot 67^{4} + \left(21 a^{2} + 54 a + 25\right)\cdot 67^{5} + \left(26 a^{2} + 55 a + 42\right)\cdot 67^{6} + \left(56 a^{2} + 39 a + 4\right)\cdot 67^{7} + \left(11 a^{2} + 57 a + 39\right)\cdot 67^{8} + \left(63 a^{2} + 23 a + 63\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 49 a + 3 + \left(29 a^{2} + 36 a + 25\right)\cdot 67 + \left(30 a^{2} + a + 50\right)\cdot 67^{2} + \left(14 a^{2} + 46 a + 50\right)\cdot 67^{3} + \left(49 a^{2} + 39 a + 61\right)\cdot 67^{4} + \left(61 a^{2} + 26 a + 24\right)\cdot 67^{5} + \left(49 a^{2} + 53 a + 54\right)\cdot 67^{6} + \left(23 a^{2} + a + 21\right)\cdot 67^{7} + \left(61 a^{2} + 27\right)\cdot 67^{8} + \left(57 a^{2} + 56 a + 62\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 33 a^{2} + 6 a + 5 + \left(42 a^{2} + 13 a\right)\cdot 67 + \left(28 a + 62\right)\cdot 67^{2} + \left(13 a^{2} + 61 a + 13\right)\cdot 67^{3} + \left(a + 44\right)\cdot 67^{4} + \left(37 a^{2} + 6 a + 28\right)\cdot 67^{5} + \left(23 a^{2} + 52 a + 34\right)\cdot 67^{6} + \left(24 a^{2} + 55 a + 56\right)\cdot 67^{7} + \left(12 a^{2} + 9 a + 7\right)\cdot 67^{8} + \left(54 a^{2} + 62 a + 39\right)\cdot 67^{9} +O(67^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 3 a^{2} + a + 2 + \left(63 a^{2} + 36 a + 44\right)\cdot 67 + \left(34 a^{2} + 61 a + 17\right)\cdot 67^{2} + \left(36 a^{2} + 6 a + 57\right)\cdot 67^{3} + \left(2 a^{2} + 57 a + 34\right)\cdot 67^{4} + \left(44 a^{2} + 63 a + 48\right)\cdot 67^{5} + \left(20 a^{2} + 26 a + 19\right)\cdot 67^{6} + \left(26 a^{2} + 58 a + 18\right)\cdot 67^{7} + \left(4 a^{2} + 16 a + 9\right)\cdot 67^{8} + \left(5 a^{2} + 12 a + 32\right)\cdot 67^{9} +O(67^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(2,3)$ | $0$ |
$18$ | $2$ | $(2,5)(3,6)(7,9)$ | $0$ |
$27$ | $2$ | $(1,4)(2,3)(5,6)$ | $0$ |
$27$ | $2$ | $(2,3)(5,6)$ | $0$ |
$54$ | $2$ | $(1,5)(2,3)(4,6)(7,8)$ | $0$ |
$6$ | $3$ | $(1,4,8)$ | $-8$ |
$8$ | $3$ | $(1,4,8)(2,3,9)(5,6,7)$ | $-2$ |
$12$ | $3$ | $(1,4,8)(5,6,7)$ | $4$ |
$72$ | $3$ | $(1,2,5)(3,6,4)(7,8,9)$ | $-2$ |
$54$ | $4$ | $(2,6,3,5)(7,9)$ | $0$ |
$162$ | $4$ | $(1,2,4,3)(6,7)(8,9)$ | $0$ |
$36$ | $6$ | $(1,4,8)(2,5)(3,6)(7,9)$ | $0$ |
$36$ | $6$ | $(1,3,4,9,8,2)$ | $0$ |
$36$ | $6$ | $(1,4,8)(2,3)$ | $0$ |
$36$ | $6$ | $(1,4,8)(2,3)(5,6,7)$ | $0$ |
$54$ | $6$ | $(1,8,4)(2,3)(5,6)$ | $0$ |
$72$ | $6$ | $(1,4,8)(2,5,3,6,9,7)$ | $0$ |
$108$ | $6$ | $(1,6,4,7,8,5)(2,3)$ | $0$ |
$216$ | $6$ | $(1,2,6,4,3,5)(7,8,9)$ | $0$ |
$144$ | $9$ | $(1,3,6,4,9,7,8,2,5)$ | $1$ |
$108$ | $12$ | $(1,4,8)(2,6,3,5)(7,9)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.