Basic invariants
Dimension: | $16$ |
Group: | $((C_3^2:Q_8):C_3):C_2$ |
Conductor: | \(136\!\cdots\!104\)\(\medspace = 2^{22} \cdot 71^{10} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.131174690735104.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T1334 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_3^2:\GL(2,3)$ |
Projective stem field: | Galois closure of 9.3.131174690735104.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 2x^{8} - 7x^{7} + 28x^{6} - 21x^{5} - 46x^{4} + 103x^{3} - 42x^{2} - 2x + 10 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{4} + 3x^{2} + 12x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 12 a^{3} + 5 a^{2} + 3 a + 7 + \left(5 a^{3} + 7 a^{2} + 9 a + 10\right)\cdot 13 + \left(3 a^{3} + 3 a^{2} + 11\right)\cdot 13^{2} + \left(a^{3} + a^{2} + 12 a + 5\right)\cdot 13^{3} + \left(3 a^{2} + 4 a + 5\right)\cdot 13^{4} + \left(3 a^{3} + 9 a^{2} + 4 a + 5\right)\cdot 13^{5} + \left(3 a + 1\right)\cdot 13^{6} + \left(3 a^{3} + 4 a^{2} + 5 a + 2\right)\cdot 13^{7} + \left(10 a^{3} + 6 a + 9\right)\cdot 13^{8} + \left(3 a^{2} + 11 a + 6\right)\cdot 13^{9} +O(13^{10})\)
$r_{ 2 }$ |
$=$ |
\( 4 a^{3} + 12 a^{2} + 11 a + 4 + \left(9 a^{2} + 11 a + 9\right)\cdot 13 + \left(2 a^{3} + 8 a^{2} + 9 a + 6\right)\cdot 13^{2} + \left(6 a^{3} + 3 a + 3\right)\cdot 13^{3} + \left(10 a^{3} + 11 a^{2} + 10 a\right)\cdot 13^{4} + \left(4 a^{3} + 5 a^{2} + 7 a + 10\right)\cdot 13^{5} + \left(8 a^{3} + 2 a^{2} + 8 a + 5\right)\cdot 13^{6} + \left(6 a + 7\right)\cdot 13^{7} + \left(2 a^{3} + 6 a^{2} + 8 a + 2\right)\cdot 13^{8} + \left(4 a^{3} + 4 a + 7\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 6 a^{2} + 3 a + \left(11 a^{2} + 4 a + 11\right)\cdot 13 + \left(6 a^{3} + a^{2} + 12 a + 1\right)\cdot 13^{2} + \left(4 a^{3} + 4 a^{2} + 10 a + 12\right)\cdot 13^{3} + \left(4 a^{3} + 8 a^{2} + 8 a + 6\right)\cdot 13^{4} + \left(6 a^{3} + 9 a^{2} + 8 a\right)\cdot 13^{5} + \left(12 a^{3} + 4 a^{2} + 7 a + 12\right)\cdot 13^{6} + \left(10 a^{3} + 8 a^{2} + 3 a + 2\right)\cdot 13^{7} + \left(7 a + 10\right)\cdot 13^{8} + \left(9 a^{2} + 9 a + 10\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 9 a^{3} + 10 a^{2} + 7 + \left(5 a^{3} + 5 a^{2} + a + 12\right)\cdot 13 + \left(a^{3} + 2 a^{2} + 5 a + 4\right)\cdot 13^{2} + \left(7 a^{3} + 3 a^{2} + 4 a + 9\right)\cdot 13^{3} + \left(8 a^{3} + 2 a^{2} + 4 a + 8\right)\cdot 13^{4} + \left(7 a^{3} + 10 a^{2} + 11 a + 9\right)\cdot 13^{5} + \left(11 a^{3} + 5 a^{2} + 8 a\right)\cdot 13^{6} + \left(11 a^{3} + 7 a^{2} + 12 a + 9\right)\cdot 13^{7} + \left(4 a^{3} + 10 a^{2} + 11 a + 2\right)\cdot 13^{8} + \left(5 a^{3} + a^{2} + 7\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 4 + 6\cdot 13 + 6\cdot 13^{2} + 10\cdot 13^{3} + 9\cdot 13^{4} + 9\cdot 13^{5} + 7\cdot 13^{6} + 11\cdot 13^{7} + 13^{8} + 7\cdot 13^{9} +O(13^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 12 a^{3} + 3 a^{2} + 11 a + 6 + \left(3 a^{3} + 4 a^{2} + 11 a + 9\right)\cdot 13 + \left(10 a^{3} + 9 a^{2} + 11 a + 12\right)\cdot 13^{2} + \left(11 a^{3} + 6 a^{2} + 7 a + 3\right)\cdot 13^{3} + \left(8 a^{3} + 5 a^{2} + 9 a + 11\right)\cdot 13^{4} + \left(3 a^{3} + 4 a^{2} + a + 7\right)\cdot 13^{5} + \left(12 a^{3} + 8 a^{2} + 5 a + 2\right)\cdot 13^{6} + \left(9 a^{3} + 10 a^{2} + 4 a + 10\right)\cdot 13^{7} + \left(a^{3} + 3 a^{2} + 11 a + 3\right)\cdot 13^{8} + \left(5 a^{3} + 3 a^{2} + 9 a + 2\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 7 a^{2} + 10 a + 8 + \left(2 a^{3} + 8 a^{2} + 11\right)\cdot 13 + \left(3 a^{2} + 11 a + 3\right)\cdot 13^{2} + \left(7 a^{3} + 12 a + 3\right)\cdot 13^{3} + \left(9 a^{3} + 12 a^{2} + a + 7\right)\cdot 13^{4} + \left(4 a^{3} + 8 a + 5\right)\cdot 13^{5} + \left(9 a^{3} + 6 a^{2} + 6 a + 5\right)\cdot 13^{6} + \left(2 a^{3} + 12 a^{2} + 2 a + 6\right)\cdot 13^{7} + \left(4 a^{3} + 12 a^{2} + 5 a\right)\cdot 13^{8} + \left(8 a^{3} + 4 a^{2} + 3 a + 1\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 8 }$ |
$=$ |
\( a^{3} + 12 a^{2} + 12 a + 3 + \left(a^{3} + 2 a^{2} + 3 a + 12\right)\cdot 13 + \left(6 a^{3} + 11 a^{2} + 10 a + 7\right)\cdot 13^{2} + \left(11 a^{3} + 7 a^{2} + 5 a + 3\right)\cdot 13^{3} + \left(6 a^{3} + 9 a^{2} + 6 a + 11\right)\cdot 13^{4} + \left(10 a^{3} + 2 a + 1\right)\cdot 13^{5} + \left(5 a^{3} + 4 a^{2} + 5 a + 11\right)\cdot 13^{6} + \left(10 a^{3} + a^{2} + a + 12\right)\cdot 13^{7} + \left(8 a^{3} + 9 a^{2} + 12 a + 2\right)\cdot 13^{8} + \left(2 a^{3} + 7 a^{2} + 8 a + 11\right)\cdot 13^{9} +O(13^{10})\)
| $r_{ 9 }$ |
$=$ |
\( a^{3} + 10 a^{2} + 2 a + 2 + \left(7 a^{3} + a^{2} + 9 a + 8\right)\cdot 13 + \left(9 a^{3} + 11 a^{2} + 3 a + 8\right)\cdot 13^{2} + \left(2 a^{3} + a^{2} + 7 a + 12\right)\cdot 13^{3} + \left(3 a^{3} + 5 a + 3\right)\cdot 13^{4} + \left(11 a^{3} + 11 a^{2} + 7 a + 1\right)\cdot 13^{5} + \left(4 a^{3} + 6 a^{2} + 6 a + 5\right)\cdot 13^{6} + \left(2 a^{3} + 7 a^{2} + 2 a + 2\right)\cdot 13^{7} + \left(6 a^{3} + 8 a^{2} + 2 a + 5\right)\cdot 13^{8} + \left(12 a^{3} + 8 a^{2} + 3 a + 11\right)\cdot 13^{9} +O(13^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$9$ | $2$ | $(1,2)(3,7)(4,8)(6,9)$ | $0$ |
$36$ | $2$ | $(2,6)(3,5)(4,9)$ | $0$ |
$8$ | $3$ | $(1,7,8)(2,4,3)(5,6,9)$ | $-2$ |
$24$ | $3$ | $(3,8,9)(4,6,7)$ | $-2$ |
$48$ | $3$ | $(1,2,9)(3,6,8)(4,5,7)$ | $1$ |
$54$ | $4$ | $(1,7,2,3)(4,6,8,9)$ | $0$ |
$72$ | $6$ | $(1,9,2,3,5,8)(4,7)$ | $0$ |
$72$ | $6$ | $(1,7,8)(2,9,3,6,4,5)$ | $0$ |
$54$ | $8$ | $(1,7,2,8,9,6,3,5)$ | $0$ |
$54$ | $8$ | $(1,6,2,5,9,7,3,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.