Properties

Label 16.11e8_5563e8.36t1252.1c1
Dimension 16
Group $S_6$
Conductor $ 11^{8} \cdot 5563^{8}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$16$
Group:$S_6$
Conductor:$196613783615813525564714571846198792001= 11^{8} \cdot 5563^{8} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} - x^{3} - x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 36T1252
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 283 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 283 }$: $ x^{2} + 282 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 162 a + 127 + \left(122 a + 122\right)\cdot 283 + \left(251 a + 272\right)\cdot 283^{2} + \left(191 a + 65\right)\cdot 283^{3} + \left(10 a + 270\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 229 + \left(235 a + 92\right)\cdot 283 + \left(128 a + 131\right)\cdot 283^{2} + \left(41 a + 41\right)\cdot 283^{3} + \left(137 a + 152\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 268 a + 124 + \left(269 a + 123\right)\cdot 283 + \left(149 a + 69\right)\cdot 283^{2} + \left(35 a + 23\right)\cdot 283^{3} + \left(173 a + 259\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 109 + \left(13 a + 125\right)\cdot 283 + \left(133 a + 232\right)\cdot 283^{2} + \left(247 a + 191\right)\cdot 283^{3} + \left(109 a + 113\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 121 a + 6 + \left(160 a + 83\right)\cdot 283 + \left(31 a + 118\right)\cdot 283^{2} + \left(91 a + 6\right)\cdot 283^{3} + \left(272 a + 89\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 257 a + 255 + \left(47 a + 18\right)\cdot 283 + \left(154 a + 25\right)\cdot 283^{2} + \left(241 a + 237\right)\cdot 283^{3} + \left(145 a + 247\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$16$
$15$$2$$(1,2)(3,4)(5,6)$$0$
$15$$2$$(1,2)$$0$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-2$
$40$$3$$(1,2,3)$$-2$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.