Properties

Label 15.995173e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 995173^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$952765113902610714886822099393460999502966730959717162270649= 995173^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} + 2 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 19 + \left(60 a + 48\right)\cdot 73 + \left(70 a + 34\right)\cdot 73^{2} + \left(68 a + 45\right)\cdot 73^{3} + \left(48 a + 63\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 a + 58 + \left(12 a + 69\right)\cdot 73 + \left(2 a + 40\right)\cdot 73^{2} + \left(4 a + 35\right)\cdot 73^{3} + \left(24 a + 68\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 2\cdot 73 + 28\cdot 73^{2} + 70\cdot 73^{3} + 29\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 a + 30 + \left(15 a + 12\right)\cdot 73 + \left(15 a + 38\right)\cdot 73^{2} + \left(59 a + 40\right)\cdot 73^{3} + \left(72 a + 50\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 63\cdot 73 + 22\cdot 73^{2} + 70\cdot 73^{3} + 45\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 64 + \left(57 a + 72\right)\cdot 73 + \left(57 a + 67\right)\cdot 73^{2} + \left(13 a + 56\right)\cdot 73^{3} + 63\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 66 + 21\cdot 73 + 59\cdot 73^{2} + 45\cdot 73^{3} + 42\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.