Properties

Label 15.83934569e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 83934569^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$4165856668701115417696631747515024403849= 83934569^{5} $
Artin number field: Splitting field of $f= x^{7} - 8 x^{5} + 19 x^{3} - x^{2} - 13 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even
Determinant: 1.83934569.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 84 + 126\cdot 127 + 45\cdot 127^{2} + 67\cdot 127^{3} + 90\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 38 + \left(125 a + 79\right)\cdot 127 + 28 a\cdot 127^{2} + \left(68 a + 53\right)\cdot 127^{3} + \left(55 a + 84\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 60 + \left(88 a + 93\right)\cdot 127 + \left(62 a + 73\right)\cdot 127^{2} + \left(61 a + 57\right)\cdot 127^{3} + \left(28 a + 97\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 a + 45 + \left(a + 70\right)\cdot 127 + \left(98 a + 31\right)\cdot 127^{2} + \left(58 a + 92\right)\cdot 127^{3} + \left(71 a + 71\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 a + 113 + \left(38 a + 1\right)\cdot 127 + \left(64 a + 48\right)\cdot 127^{2} + \left(65 a + 56\right)\cdot 127^{3} + \left(98 a + 64\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 72 + 62\cdot 127 + 85\cdot 127^{2} + 24\cdot 127^{3} + 75\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 73\cdot 127 + 95\cdot 127^{2} + 29\cdot 127^{3} + 24\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.