Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 155 + 112\cdot 191 + 159\cdot 191^{2} + 163\cdot 191^{3} + 65\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 93 + \left(39 a + 139\right)\cdot 191 + \left(44 a + 179\right)\cdot 191^{2} + \left(185 a + 41\right)\cdot 191^{3} + \left(13 a + 140\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 175 + 160\cdot 191 + 180\cdot 191^{2} + 54\cdot 191^{3} + 42\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 158 + 126\cdot 191 + 115\cdot 191^{2} + 133\cdot 191^{3} +O\left(191^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 a + 126 + 133\cdot 191 + \left(98 a + 113\right)\cdot 191^{2} + \left(99 a + 92\right)\cdot 191^{3} + \left(112 a + 75\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 184 a + 100 + \left(151 a + 171\right)\cdot 191 + \left(146 a + 184\right)\cdot 191^{2} + \left(5 a + 182\right)\cdot 191^{3} + \left(177 a + 159\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 167 a + 150 + \left(190 a + 109\right)\cdot 191 + \left(92 a + 20\right)\cdot 191^{2} + \left(91 a + 94\right)\cdot 191^{3} + \left(78 a + 88\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$15$ |
| $21$ |
$2$ |
$(1,2)$ |
$-5$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$3$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$3$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$1$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$0$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.