Properties

Label 15.79e5_9199e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 79^{5} \cdot 9199^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$202692906723499021378523697601= 79^{5} \cdot 9199^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 5 x^{3} + 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 433 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 433 }$: $ x^{2} + 432 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 193 + 119\cdot 433 + 23\cdot 433^{2} + 54\cdot 433^{3} + 159\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 204\cdot 433 + 9\cdot 433^{2} + 46\cdot 433^{3} + 400\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 294 a + 23 + \left(290 a + 234\right)\cdot 433 + \left(68 a + 158\right)\cdot 433^{2} + \left(405 a + 189\right)\cdot 433^{3} + \left(342 a + 204\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 148 + 171\cdot 433 + 107\cdot 433^{2} + 75\cdot 433^{3} + 245\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 139 a + 317 + \left(142 a + 230\right)\cdot 433 + \left(364 a + 369\right)\cdot 433^{2} + \left(27 a + 92\right)\cdot 433^{3} + \left(90 a + 142\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 206 a + 406 + \left(196 a + 390\right)\cdot 433 + \left(426 a + 416\right)\cdot 433^{2} + \left(223 a + 88\right)\cdot 433^{3} + \left(392 a + 206\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 227 a + 179 + \left(236 a + 381\right)\cdot 433 + \left(6 a + 213\right)\cdot 433^{2} + \left(209 a + 319\right)\cdot 433^{3} + \left(40 a + 374\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.