Properties

Label 15.79e10_9199e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 79^{10} \cdot 9199^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$41084414436021074786189022448905327434527286887533293155201= 79^{10} \cdot 9199^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 5 x^{3} + 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 433 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 433 }$: $ x^{2} + 432 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 193 + 119\cdot 433 + 23\cdot 433^{2} + 54\cdot 433^{3} + 159\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 204\cdot 433 + 9\cdot 433^{2} + 46\cdot 433^{3} + 400\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 294 a + 23 + \left(290 a + 234\right)\cdot 433 + \left(68 a + 158\right)\cdot 433^{2} + \left(405 a + 189\right)\cdot 433^{3} + \left(342 a + 204\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 148 + 171\cdot 433 + 107\cdot 433^{2} + 75\cdot 433^{3} + 245\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 139 a + 317 + \left(142 a + 230\right)\cdot 433 + \left(364 a + 369\right)\cdot 433^{2} + \left(27 a + 92\right)\cdot 433^{3} + \left(90 a + 142\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 206 a + 406 + \left(196 a + 390\right)\cdot 433 + \left(426 a + 416\right)\cdot 433^{2} + \left(223 a + 88\right)\cdot 433^{3} + \left(392 a + 206\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 227 a + 179 + \left(236 a + 381\right)\cdot 433 + \left(6 a + 213\right)\cdot 433^{2} + \left(209 a + 319\right)\cdot 433^{3} + \left(40 a + 374\right)\cdot 433^{4} +O\left(433^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.