Properties

Label 15.739e5_1187e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 739^{5} \cdot 1187^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$519368716296684052786199569193= 739^{5} \cdot 1187^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + x^{4} + 2 x^{3} + x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 63 a + 75 + \left(18 a + 56\right)\cdot 103 + \left(15 a + 2\right)\cdot 103^{2} + \left(79 a + 90\right)\cdot 103^{3} + \left(40 a + 96\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 a + 55 + \left(19 a + 29\right)\cdot 103 + \left(34 a + 87\right)\cdot 103^{2} + \left(32 a + 48\right)\cdot 103^{3} + \left(66 a + 3\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 62\cdot 103 + 57\cdot 103^{2} + 58\cdot 103^{3} + 72\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 66 a + 85 + \left(49 a + 96\right)\cdot 103 + \left(48 a + 30\right)\cdot 103^{2} + \left(93 a + 87\right)\cdot 103^{3} + \left(89 a + 21\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 48 + \left(53 a + 80\right)\cdot 103 + \left(54 a + 29\right)\cdot 103^{2} + \left(9 a + 29\right)\cdot 103^{3} + \left(13 a + 18\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 35 + \left(84 a + 12\right)\cdot 103 + \left(87 a + 102\right)\cdot 103^{2} + \left(23 a + 50\right)\cdot 103^{3} + \left(62 a + 58\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 24 a + 31 + \left(83 a + 73\right)\cdot 103 + \left(68 a + 101\right)\cdot 103^{2} + \left(70 a + 46\right)\cdot 103^{3} + \left(36 a + 37\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.