Properties

Label 15.674057e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 674057^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$19362714036427442770716062530843746357834039679942421071249= 674057^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 5 x^{5} - 6 x^{4} + 3 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 98 + 30\cdot 101 + 54\cdot 101^{2} + 17\cdot 101^{3} + 93\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 94 a + 48 + \left(26 a + 7\right)\cdot 101 + \left(66 a + 13\right)\cdot 101^{2} + \left(64 a + 32\right)\cdot 101^{3} + \left(41 a + 21\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 + 83\cdot 101 + 92\cdot 101^{2} + 29\cdot 101^{3} + 35\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 3 + \left(40 a + 30\right)\cdot 101 + \left(100 a + 88\right)\cdot 101^{2} + \left(31 a + 17\right)\cdot 101^{3} + \left(23 a + 65\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 20 + \left(74 a + 21\right)\cdot 101 + \left(34 a + 49\right)\cdot 101^{2} + \left(36 a + 22\right)\cdot 101^{3} + \left(59 a + 22\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 45\cdot 101 + 60\cdot 101^{2} + 36\cdot 101^{3} + 40\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 a + 23 + \left(60 a + 84\right)\cdot 101 + 45\cdot 101^{2} + \left(69 a + 45\right)\cdot 101^{3} + \left(77 a + 25\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.