Properties

Label 15.619e10_111491e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 619^{10} \cdot 111491^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$2450781527894780359778258157439107986982840265242923576819192571721623650851201= 619^{10} \cdot 111491^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 6 x^{5} + 8 x^{4} + 11 x^{3} - 6 x^{2} - 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 + 57\cdot 67 + 28\cdot 67^{2} + 25\cdot 67^{3} + 15\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 39 + \left(43 a + 25\right)\cdot 67 + \left(18 a + 1\right)\cdot 67^{2} + \left(a + 32\right)\cdot 67^{3} + \left(18 a + 63\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 56 + \left(36 a + 43\right)\cdot 67 + \left(21 a + 37\right)\cdot 67^{2} + \left(43 a + 22\right)\cdot 67^{3} + \left(53 a + 15\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 18 + \left(30 a + 31\right)\cdot 67 + \left(45 a + 20\right)\cdot 67^{2} + \left(23 a + 40\right)\cdot 67^{3} + \left(13 a + 52\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 64 a + 51 + \left(23 a + 60\right)\cdot 67 + \left(48 a + 32\right)\cdot 67^{2} + \left(65 a + 18\right)\cdot 67^{3} + 48 a\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 54 + \left(46 a + 8\right)\cdot 67 + \left(62 a + 38\right)\cdot 67^{2} + \left(63 a + 1\right)\cdot 67^{3} + \left(34 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 a + \left(20 a + 40\right)\cdot 67 + \left(4 a + 41\right)\cdot 67^{2} + \left(3 a + 60\right)\cdot 67^{3} + \left(32 a + 64\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.