Properties

Label 15.6099227e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 6099227^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$8440612948558941141355935530284907= 6099227^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 3 x^{5} + 8 x^{4} + x^{3} - 7 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.6099227.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: $ x^{2} + 145 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 73 a + 5 + \left(94 a + 92\right)\cdot 149 + \left(102 a + 42\right)\cdot 149^{2} + \left(59 a + 102\right)\cdot 149^{3} + \left(97 a + 60\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 60\cdot 149 + 102\cdot 149^{2} + 41\cdot 149^{3} + 106\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 48 + \left(43 a + 84\right)\cdot 149 + \left(80 a + 138\right)\cdot 149^{2} + \left(20 a + 38\right)\cdot 149^{3} + \left(52 a + 4\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 a + 148 + \left(54 a + 98\right)\cdot 149 + \left(46 a + 60\right)\cdot 149^{2} + \left(89 a + 89\right)\cdot 149^{3} + \left(51 a + 92\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 79 a + 30 + \left(105 a + 39\right)\cdot 149 + \left(68 a + 118\right)\cdot 149^{2} + \left(128 a + 40\right)\cdot 149^{3} + \left(96 a + 43\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 98 + 116\cdot 149 + 78\cdot 149^{2} + 121\cdot 149^{3} + 120\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 104\cdot 149 + 54\cdot 149^{2} + 12\cdot 149^{3} + 19\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.