Properties

Label 15.5e5_53e5_89e5_263e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 5^{5} \cdot 53^{5} \cdot 89^{5} \cdot 263^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$9182440974762362003699009787034375= 5^{5} \cdot 53^{5} \cdot 89^{5} \cdot 263^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + x^{5} + 4 x^{4} - 8 x^{3} + x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.5_53_89_263.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 337 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 337 }$: $ x^{2} + 332 x + 10 $
Roots:
$r_{ 1 }$ $=$ $ 217 a + 224 + \left(256 a + 128\right)\cdot 337 + \left(161 a + 17\right)\cdot 337^{2} + \left(292 a + 202\right)\cdot 337^{3} + \left(157 a + 241\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 120 a + 298 + \left(80 a + 183\right)\cdot 337 + \left(175 a + 232\right)\cdot 337^{2} + \left(44 a + 154\right)\cdot 337^{3} + \left(179 a + 64\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 279 a + 85 + \left(108 a + 189\right)\cdot 337 + \left(306 a + 130\right)\cdot 337^{2} + \left(126 a + 190\right)\cdot 337^{3} + \left(131 a + 335\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 a + 132 + \left(228 a + 117\right)\cdot 337 + \left(30 a + 205\right)\cdot 337^{2} + \left(210 a + 181\right)\cdot 337^{3} + \left(205 a + 191\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 271 + 149\cdot 337 + 169\cdot 337^{2} + 84\cdot 337^{3} + 294\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 256 + \left(265 a + 148\right)\cdot 337 + \left(137 a + 84\right)\cdot 337^{2} + \left(138 a + 327\right)\cdot 337^{3} + \left(50 a + 221\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 304 a + 84 + \left(71 a + 93\right)\cdot 337 + \left(199 a + 171\right)\cdot 337^{2} + \left(198 a + 207\right)\cdot 337^{3} + \left(286 a + 335\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.