Properties

Label 15.5044607e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 5044607^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$10672677389102826140995342658903085982049285895908030088478173397249= 5044607^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 3 x^{5} + 6 x^{4} + x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 13 + \left(17 a + 29\right)\cdot 31 + \left(18 a + 1\right)\cdot 31^{2} + \left(8 a + 7\right)\cdot 31^{3} + \left(23 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 21 + \left(10 a + 3\right)\cdot 31 + \left(14 a + 18\right)\cdot 31^{2} + \left(16 a + 3\right)\cdot 31^{3} + \left(6 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 1 + \left(13 a + 21\right)\cdot 31 + 25\cdot 31^{2} + \left(19 a + 23\right)\cdot 31^{3} + \left(24 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 8 + \left(13 a + 20\right)\cdot 31 + \left(12 a + 21\right)\cdot 31^{2} + \left(22 a + 5\right)\cdot 31^{3} + \left(7 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 6 + \left(17 a + 30\right)\cdot 31 + \left(30 a + 12\right)\cdot 31^{2} + \left(11 a + 30\right)\cdot 31^{3} + \left(6 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 9 + 20 a\cdot 31 + \left(16 a + 5\right)\cdot 31^{2} + \left(14 a + 22\right)\cdot 31^{3} + \left(24 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 + 19\cdot 31 + 7\cdot 31^{2} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.