Properties

Label 15.4582807e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 4582807^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$4086162914137834073411813621579410323696233699001325422919656871249= 4582807^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} - x^{3} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 14 + \left(78 a + 137\right)\cdot 173 + \left(107 a + 96\right)\cdot 173^{2} + \left(60 a + 60\right)\cdot 173^{3} + \left(152 a + 77\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 164 + \left(57 a + 59\right)\cdot 173 + \left(39 a + 170\right)\cdot 173^{2} + \left(149 a + 85\right)\cdot 173^{3} + \left(170 a + 126\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 a + 38 + \left(115 a + 61\right)\cdot 173 + \left(133 a + 97\right)\cdot 173^{2} + \left(23 a + 124\right)\cdot 173^{3} + \left(2 a + 141\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 + 13\cdot 173 + 56\cdot 173^{2} + 156\cdot 173^{3} + 59\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 162 + 81\cdot 173 + 157\cdot 173^{2} + 141\cdot 173^{3} + 77\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 140 + 132\cdot 173 + 11\cdot 173^{2} + 100\cdot 173^{3} + 101\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 101 a + 129 + \left(94 a + 32\right)\cdot 173 + \left(65 a + 102\right)\cdot 173^{2} + \left(112 a + 22\right)\cdot 173^{3} + \left(20 a + 107\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.