Properties

Label 15.4438087e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 4438087^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$1721785544675461015968560100799207= 4438087^{5} $
Artin number field: Splitting field of $f= x^{7} - 4 x^{5} + 2 x^{3} - 4 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.4438087.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 35 + \left(25 a + 2\right)\cdot 59 + \left(29 a + 52\right)\cdot 59^{2} + \left(3 a + 42\right)\cdot 59^{3} + \left(41 a + 54\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 58\cdot 59 + 52\cdot 59^{2} + 47\cdot 59^{3} + 39\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 18 + \left(21 a + 57\right)\cdot 59 + \left(6 a + 49\right)\cdot 59^{2} + \left(32 a + 54\right)\cdot 59^{3} + \left(22 a + 31\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 a + 27 + \left(37 a + 10\right)\cdot 59 + \left(52 a + 35\right)\cdot 59^{2} + \left(26 a + 21\right)\cdot 59^{3} + \left(36 a + 22\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 a + 7 + \left(44 a + 25\right)\cdot 59 + \left(37 a + 57\right)\cdot 59^{2} + \left(31 a + 28\right)\cdot 59^{3} + \left(43 a + 50\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 57 + \left(33 a + 5\right)\cdot 59 + \left(29 a + 56\right)\cdot 59^{2} + \left(55 a + 16\right)\cdot 59^{3} + \left(17 a + 33\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 1 + \left(14 a + 17\right)\cdot 59 + \left(21 a + 50\right)\cdot 59^{2} + \left(27 a + 22\right)\cdot 59^{3} + \left(15 a + 3\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.