Properties

Label 15.41e5_1713281e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 41^{5} \cdot 1713281^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$1710260545165616552306502663328809606601= 41^{5} \cdot 1713281^{5} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - x^{4} + 13 x^{3} + 2 x^{2} - 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even
Determinant: 1.41_1713281.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 277 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 277 }$: $ x^{2} + 274 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 219 a + 56 + \left(197 a + 56\right)\cdot 277 + \left(158 a + 117\right)\cdot 277^{2} + \left(201 a + 38\right)\cdot 277^{3} + \left(203 a + 196\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 152 + 202\cdot 277 + 96\cdot 277^{2} + 256\cdot 277^{3} + 43\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 222 + 213\cdot 277 + 231\cdot 277^{2} + 36\cdot 277^{3} + 253\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 273 + 88\cdot 277 + 172\cdot 277^{2} + 89\cdot 277^{3} + 191\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 271 a + 132 + \left(276 a + 193\right)\cdot 277 + \left(48 a + 250\right)\cdot 277^{2} + \left(103 a + 247\right)\cdot 277^{3} + \left(250 a + 138\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 159 + \left(79 a + 153\right)\cdot 277 + \left(118 a + 118\right)\cdot 277^{2} + \left(75 a + 207\right)\cdot 277^{3} + \left(73 a + 51\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 114 + 199\cdot 277 + \left(228 a + 120\right)\cdot 277^{2} + \left(173 a + 231\right)\cdot 277^{3} + \left(26 a + 232\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.