Properties

Label 15.41e10_25537e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 41^{10} \cdot 25537^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$1583205653509654610005188732647175265325050008441415522490449= 41^{10} \cdot 25537^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{4} + x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 122\cdot 191 + 13\cdot 191^{2} + 80\cdot 191^{3} + 123\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 164 + 101\cdot 191 + 54\cdot 191^{2} + 4\cdot 191^{3} + 182\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 151 + 11\cdot 191 + 81\cdot 191^{2} + 74\cdot 191^{3} + 118\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 a + 76 + \left(94 a + 116\right)\cdot 191 + \left(183 a + 115\right)\cdot 191^{2} + \left(163 a + 18\right)\cdot 191^{3} + \left(126 a + 72\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 179 + 102\cdot 191 + 171\cdot 191^{2} + 138\cdot 191^{3} + 69\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 123 a + 144 + \left(96 a + 142\right)\cdot 191 + \left(7 a + 13\right)\cdot 191^{2} + \left(27 a + 190\right)\cdot 191^{3} + \left(64 a + 34\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 41 + 166\cdot 191 + 122\cdot 191^{2} + 66\cdot 191^{3} + 163\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.