Properties

Label 15.3e10_16653619e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 3^{10} \cdot 16653619^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$96894425941790784758997302420953630811692521468084857458630336246978075347249= 3^{10} \cdot 16653619^{10} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} + 13 x^{3} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 64 + \left(20 a + 43\right)\cdot 73 + \left(66 a + 49\right)\cdot 73^{2} + \left(62 a + 31\right)\cdot 73^{3} + \left(20 a + 32\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 a + 26 + \left(2 a + 56\right)\cdot 73 + \left(53 a + 37\right)\cdot 73^{2} + \left(52 a + 21\right)\cdot 73^{3} + \left(48 a + 57\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 1 + \left(6 a + 58\right)\cdot 73 + \left(30 a + 39\right)\cdot 73^{2} + \left(22 a + 40\right)\cdot 73^{3} + \left(49 a + 21\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 33 + \left(70 a + 13\right)\cdot 73 + \left(19 a + 48\right)\cdot 73^{2} + \left(20 a + 53\right)\cdot 73^{3} + \left(24 a + 4\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 38 + \left(52 a + 65\right)\cdot 73 + \left(6 a + 8\right)\cdot 73^{2} + \left(10 a + 8\right)\cdot 73^{3} + \left(52 a + 32\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 23\cdot 73 + 57\cdot 73^{2} + 58\cdot 73^{3} + 69\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 26 a + 69 + \left(66 a + 30\right)\cdot 73 + \left(42 a + 50\right)\cdot 73^{2} + \left(50 a + 4\right)\cdot 73^{3} + \left(23 a + 1\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.