Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 557 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 557 }$: $ x^{2} + 553 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 216 a + 461 + \left(406 a + 311\right)\cdot 557 + \left(321 a + 201\right)\cdot 557^{2} + \left(135 a + 296\right)\cdot 557^{3} + \left(52 a + 248\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 213 + 459\cdot 557 + 158\cdot 557^{2} + 262\cdot 557^{3} + 111\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 499 + 529\cdot 557 + 104\cdot 557^{2} + 58\cdot 557^{3} + 84\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 342 a + 428 + \left(496 a + 139\right)\cdot 557 + \left(521 a + 543\right)\cdot 557^{2} + \left(326 a + 508\right)\cdot 557^{3} + \left(312 a + 145\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 341 a + 211 + \left(150 a + 50\right)\cdot 557 + \left(235 a + 525\right)\cdot 557^{2} + \left(421 a + 516\right)\cdot 557^{3} + \left(504 a + 321\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 215 a + 125 + \left(60 a + 113\right)\cdot 557 + \left(35 a + 463\right)\cdot 557^{2} + \left(230 a + 180\right)\cdot 557^{3} + \left(244 a + 512\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 293 + 66\cdot 557 + 231\cdot 557^{2} + 404\cdot 557^{3} + 246\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $15$ |
| $21$ | $2$ | $(1,2)$ | $5$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $70$ | $3$ | $(1,2,3)$ | $3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.