Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 9 + \left(34 a + 4\right)\cdot 47 + \left(6 a + 38\right)\cdot 47^{2} + \left(29 a + 29\right)\cdot 47^{3} + \left(24 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 a + 32 + \left(32 a + 42\right)\cdot 47 + \left(20 a + 18\right)\cdot 47^{2} + \left(28 a + 33\right)\cdot 47^{3} + \left(20 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 41 a + 44 + \left(14 a + 6\right)\cdot 47 + \left(26 a + 28\right)\cdot 47^{2} + \left(18 a + 22\right)\cdot 47^{3} + \left(26 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 a + 8 + \left(46 a + 24\right)\cdot 47 + \left(32 a + 35\right)\cdot 47^{2} + \left(8 a + 3\right)\cdot 47^{3} + \left(40 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 43 a + 17 + \left(12 a + 21\right)\cdot 47 + \left(40 a + 17\right)\cdot 47^{2} + \left(17 a + 34\right)\cdot 47^{3} + \left(22 a + 32\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 26 + 40\cdot 47 + 41\cdot 47^{2} + 28\cdot 47^{3} + 26\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 25 a + 5 + 47 + \left(14 a + 8\right)\cdot 47^{2} + \left(38 a + 35\right)\cdot 47^{3} + \left(6 a + 11\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $15$ |
| $21$ | $2$ | $(1,2)$ | $5$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $70$ | $3$ | $(1,2,3)$ | $3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.