Properties

Label 15.313e5_1307e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 313^{5} \cdot 1307^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$11457757482495676836545566451= 313^{5} \cdot 1307^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{5} + 2 x^{3} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 353 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 353 }$: $ x^{2} + 348 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 232 a + 227 + \left(27 a + 2\right)\cdot 353 + \left(298 a + 81\right)\cdot 353^{2} + \left(349 a + 121\right)\cdot 353^{3} + \left(152 a + 338\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 118 a + 151 + \left(107 a + 162\right)\cdot 353 + \left(302 a + 132\right)\cdot 353^{2} + \left(134 a + 105\right)\cdot 353^{3} + \left(84 a + 279\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 243 + 159\cdot 353 + 14\cdot 353^{2} + 247\cdot 353^{3} + 192\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 121 a + 328 + \left(325 a + 261\right)\cdot 353 + \left(54 a + 131\right)\cdot 353^{2} + \left(3 a + 160\right)\cdot 353^{3} + \left(200 a + 47\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 130 + 229\cdot 353 + 177\cdot 353^{2} + 315\cdot 353^{3} + 193\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 298 + 14\cdot 353 + 44\cdot 353^{2} + 338\cdot 353^{3} + 146\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 235 a + 35 + \left(245 a + 228\right)\cdot 353 + \left(50 a + 124\right)\cdot 353^{2} + \left(218 a + 124\right)\cdot 353^{3} + \left(268 a + 213\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.