Properties

Label 15.29e10_6763e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 29^{10} \cdot 6763^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$84211975074051783447764806699225256087520415572051649= 29^{10} \cdot 6763^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} - x^{4} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 33\cdot 41 + 25\cdot 41^{2} + 11\cdot 41^{3} + 38\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 36 + \left(17 a + 40\right)\cdot 41 + \left(19 a + 22\right)\cdot 41^{2} + \left(3 a + 3\right)\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + \left(5 a + 19\right)\cdot 41 + \left(29 a + 2\right)\cdot 41^{2} + \left(30 a + 21\right)\cdot 41^{3} + \left(20 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 40 + \left(35 a + 8\right)\cdot 41 + \left(11 a + 2\right)\cdot 41^{2} + \left(10 a + 2\right)\cdot 41^{3} + \left(20 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 30 + \left(9 a + 29\right)\cdot 41 + \left(4 a + 21\right)\cdot 41^{2} + \left(30 a + 22\right)\cdot 41^{3} + \left(3 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 34 + \left(23 a + 38\right)\cdot 41 + \left(21 a + 22\right)\cdot 41^{2} + \left(37 a + 35\right)\cdot 41^{3} + \left(40 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 20 + \left(31 a + 34\right)\cdot 41 + \left(36 a + 24\right)\cdot 41^{2} + \left(10 a + 26\right)\cdot 41^{3} + \left(37 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.