Properties

Label 15.269e5_12619e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 269^{5} \cdot 12619^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$450698488695361902595330872033551= 269^{5} \cdot 12619^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + x^{5} - x^{4} - 3 x^{3} + 4 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.269_12619.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 227 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 227 }$: $ x^{2} + 220 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 a + 147 + \left(34 a + 23\right)\cdot 227 + \left(144 a + 79\right)\cdot 227^{2} + \left(72 a + 26\right)\cdot 227^{3} + \left(11 a + 11\right)\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 172 a + 78 + \left(192 a + 208\right)\cdot 227 + \left(82 a + 145\right)\cdot 227^{2} + \left(154 a + 163\right)\cdot 227^{3} + \left(215 a + 17\right)\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 75\cdot 227 + 6\cdot 227^{2} + 93\cdot 227^{3} + 121\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 19\cdot 227 + 162\cdot 227^{2} + 90\cdot 227^{3} + 180\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 72 + \left(98 a + 80\right)\cdot 227 + \left(64 a + 162\right)\cdot 227^{2} + \left(65 a + 25\right)\cdot 227^{3} + \left(34 a + 70\right)\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 224 + 219\cdot 227 + 63\cdot 227^{2} + 90\cdot 227^{3} + 35\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 195 a + 69 + \left(128 a + 54\right)\cdot 227 + \left(162 a + 61\right)\cdot 227^{2} + \left(161 a + 191\right)\cdot 227^{3} + \left(192 a + 17\right)\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.