Properties

Label 15.263e10_4271e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 263^{10} \cdot 4271^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$3197813997378074485482319022511192751480727538874362307173649= 263^{10} \cdot 4271^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} - 2 x^{3} + 2 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 181 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 181 }$: $ x^{2} + 177 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 126 a + 70 + \left(128 a + 126\right)\cdot 181 + \left(12 a + 77\right)\cdot 181^{2} + \left(177 a + 73\right)\cdot 181^{3} + \left(130 a + 150\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 172 + 110\cdot 181 + 37\cdot 181^{2} + 135\cdot 181^{3} + 23\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 61 a + 92 + \left(7 a + 51\right)\cdot 181 + \left(29 a + 92\right)\cdot 181^{2} + \left(111 a + 118\right)\cdot 181^{3} + \left(90 a + 114\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 152 + 135\cdot 181 + 154\cdot 181^{2} + 113\cdot 181^{3} + 149\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 120 a + 155 + \left(173 a + 19\right)\cdot 181 + \left(151 a + 20\right)\cdot 181^{2} + \left(69 a + 172\right)\cdot 181^{3} + \left(90 a + 3\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 a + 31 + \left(52 a + 153\right)\cdot 181 + \left(168 a + 180\right)\cdot 181^{2} + \left(3 a + 44\right)\cdot 181^{3} + \left(50 a + 135\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 54 + 126\cdot 181 + 160\cdot 181^{2} + 65\cdot 181^{3} + 146\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.